Stimuli-Responsive Nanoparticles for siRNA Delivery

被引:17
|
作者
Eloy, Josimar O. [1 ,2 ]
Petrilli, Raquel [1 ,2 ]
Lopez, Renata F. V. [1 ]
Lee, Robert J. [2 ]
机构
[1] Univ Sao Paulo, Coll Pharmaceut Sci, BR-14040903 Ribeirao Preto, SP, Brazil
[2] Ohio State Univ, Coll Pharm, Columbus, OH 43210 USA
基金
巴西圣保罗研究基金会;
关键词
siRNA; nanoparticles; triggered release; environmental-responsive; drug delivery; SMALL INTERFERING RNA; OVERCOME DRUG-RESISTANCE; IN-VITRO; TRIGGERED RELEASE; POLYMERIC MICELLES; INTRACELLULAR DELIVERY; MEDIATED DELIVERY; SYSTEMIC DELIVERY; MATRIX METALLOPROTEINASES; GRAFTED POLYETHYLENIMINE;
D O I
10.2174/1381612821666150901095349
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Nanoparticles have been extensively employed to deliver many drugs, including siRNA, for the treatment of a variety of diseases, particularly cancer. Lately, there has been a great deal of effort to design nanoparticles with materials that are able to respond to intrinsic or extrinsic stimuli for "on demand" delivery of siRNA. These nanoparticles are able to trigger siRNA release upon different stimuli, such as a pH decrease, redox gradient, enzyme, light, magnetic field, temperature, ultrasound or electric current. Frequently, the stimuli cause the nanoparticles to undergo protonation, hydrolytic breakdown or phase transition for triggered release of siRNA, resulting in decreased side effects and better therapeutic outcome. While studies have demonstrated efficient in vitro and in vivo delivery, these "smart" nanoparticles have not yet reached the clinic. In this review, we address different classes of nanoparticles, such as polyplexes, lipoplexes, liposomes, polymeric micelles, polymeric, lipid and inorganic nanoparticles, that are able to respond to specific stimuli for siRNA triggered-release, emphasizing their application and discussing the latest advances.
引用
收藏
页码:4131 / 4144
页数:14
相关论文
共 50 条
  • [41] Multifunctional nanoparticles from albumin for stimuli-responsive efficient dual drug delivery
    Nosrati, Hamed
    Abhari, Fatemeh
    Charmi, Jalil
    Davaran, Soodabeh
    Danafar, Hossein
    BIOORGANIC CHEMISTRY, 2019, 88
  • [42] Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery: an update
    Castillo, Rafael R.
    Lozano, Daniel
    Gonzalez, Blanca
    Manzano, Miguel
    Izquierdo-Barba, Isabel
    Vallet-Regi, Maria
    EXPERT OPINION ON DRUG DELIVERY, 2019, 16 (04) : 415 - 439
  • [43] Stimuli-Responsive Prodrug Chemistries for Drug Delivery
    Taresco, Vincenzo
    Alexander, Cameron
    Singh, Nishant
    Pearce, Amanda K.
    ADVANCED THERAPEUTICS, 2018, 1 (04)
  • [44] Stimuli-responsive nanomaterials for therapeutic protein delivery
    Lu, Yue
    Sun, Wujin
    Gu, Zhen
    JOURNAL OF CONTROLLED RELEASE, 2014, 194 : 1 - 19
  • [45] Stimuli-responsive polymers and their applications in drug delivery
    Bawa, Priya
    Pillay, Viness
    Choonara, Yahya E.
    du Toit, Lisa C.
    BIOMEDICAL MATERIALS, 2009, 4 (02)
  • [46] Stimuli-responsive delivery of therapeutics for diabetes treatment
    Yu, Jicheng
    Zhang, Yuqi
    Bomba, Hunter
    Gu, Zhen
    BIOENGINEERING & TRANSLATIONAL MEDICINE, 2016, 1 (03) : 323 - 337
  • [47] DNA nanostructures for stimuli-responsive drug delivery
    Wang T.
    Liu Y.
    Wu Q.
    Lou B.
    Liu Z.
    Smart Materials in Medicine, 2022, 3 : 66 - 84
  • [48] Stimuli-responsive polypeptides for controlled drug delivery
    Zhang, Peng
    Li, Mingqian
    Xiao, Chunsheng
    Chen, Xuesi
    CHEMICAL COMMUNICATIONS, 2021, 57 (75) : 9489 - 9503
  • [49] Stimuli-responsive hydrogels for intratumoral drug delivery
    Marques, Ana C.
    Costa, Paulo J.
    Velho, Sergia
    Amaral, Maria H.
    DRUG DISCOVERY TODAY, 2021, 26 (10) : 2397 - 2405
  • [50] Stimuli-Responsive Polymersomes for Programmed Drug Delivery
    Meng, Fenghua
    Zhong, Zhiyuan
    Feijen, Jan
    BIOMACROMOLECULES, 2009, 10 (02) : 197 - 209