Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy

被引:149
作者
Block, A. [1 ]
Liebel, M. [1 ]
Yu, R. [1 ]
Spector, M. [2 ]
Sivan, Y. [3 ]
Garcia de Abajo, F. J. [1 ,4 ]
van Hulst, N. F. [1 ,4 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
[2] Ben Gurion Univ Negev, Dept Phys, IL-8410501 Beer Sheva, Israel
[3] Ben Gurion Univ Negev, Unit Electroopt Engn, IL-8410501 Beer Sheva, Israel
[4] ICREA, Barcelona 08010, Spain
关键词
GOLD-FILMS; FEMTOSECOND; DYNAMICS; TRANSPORT; SPECTROSCOPY; TEMPERATURE; THERMALIZATION; RELAXATION;
D O I
10.1126/sciadv.aav8965
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ultrafast response of metals to light is governed by intriguing nonequilibrium dynamics involving the interplay of excited electrons and phonons. The coupling between them leads to nonlinear diffusion behavior on ultrashort time scales. Here, we use scanning ultrafast thermomodulation microscopy to image the spatiotemporal hot-electron diffusion in thin gold films. By tracking local transient reflectivity with 20-nm spatial precision and 0.25-ps temporal resolution, we reveal two distinct diffusion regimes: an initial rapid diffusion during the first few picoseconds, followed by about 100-fold slower diffusion at longer times. We find a slower initial diffusion than previously predicted for purely electronic diffusion. We develop a comprehensive three-dimensional model based on a two-temperature model and evaluation of the thermo-optical response, taking into account the delaying effect of electron-phonon coupling. Our simulations describe well the observed diffusion dynamics and let us identify the two diffusion regimes as hot-electron and phononlimited thermal diffusion, respectively.
引用
收藏
页数:7
相关论文
共 57 条
[1]  
[Anonymous], 1988, MAT HDB HYBRID MICRO
[2]  
[Anonymous], 1974, J. Exp. Theor. Phys, DOI DOI 10.1016/J.JMATPROTEC.2009.05.031
[3]  
[Anonymous], 2021, INTRO SOLID STATE PH
[4]  
Ashcroft N.W., 1976, SOLID STATE PHYS
[5]   Charge-Carrier Mobility Requirements for Bulk Heterojunction Solar Cells with High Fill Factor and External Quantum Efficiency >90% [J].
Bartelt, Jonathan A. ;
Lam, David ;
Burke, Timothy M. ;
Sweetnam, Sean M. ;
McGehee, Michael D. .
ADVANCED ENERGY MATERIALS, 2015, 5 (15)
[6]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[7]   Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport [J].
Bonn, M ;
Denzler, DN ;
Funk, S ;
Wolf, M ;
Wellershoff, SS ;
Hohlfeld, J .
PHYSICAL REVIEW B, 2000, 61 (02) :1101-1105
[8]  
Born M, 2009, The Principles of Optics
[9]   Low-Temperature Plasmonics of Metallic Nanostructures [J].
Bouillard, Jean-Sebastien G. ;
Dickson, Wayne ;
O'Connor, Daniel P. ;
Wurtz, Gregory A. ;
Zayats, Anatoly V. .
NANO LETTERS, 2012, 12 (03) :1561-1565
[10]  
Brongersma ML, 2015, NAT NANOTECHNOL, V10, P25, DOI [10.1038/NNANO.2014.311, 10.1038/nnano.2014.311]