Existence of positive periodic solutions for second-order functional differential equations

被引:8
|
作者
Ma, Ruyun [1 ]
Lu, Yanqiong [1 ]
机构
[1] Northwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2014年 / 173卷 / 01期
关键词
Existence; Positive periodic solutions; Functional differential equation; Bifurcation; BOUNDARY-VALUE-PROBLEMS; SHALLOW-WATER EQUATION; CAMASSA-HOLM; BIFURCATION; INTERVAL; WAVES;
D O I
10.1007/s00605-012-0471-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show the existence of positive T-periodic solutions of second-order functional differential equations u ''(t) - rho(2)u(t)+lambda g(t)f(u(t-tau(t))) = 0, t is an element of R, where rho > 0 is a constant, g is an element of C (R, [0, infinity)), tau is an element of C(R, R) are T-periodic functions, f is an element of C([0, infinity), [0, infinity)) and lambda is a positive parameter. Our approach based on global bifurcation theorem.
引用
收藏
页码:67 / 81
页数:15
相关论文
共 50 条