The Explicit-Implicit-Null method: Removing the numerical instability of PDEs

被引:37
作者
Duchemin, Laurent [1 ]
Eggers, Jens [2 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, IRPHE UMR 7342, F-13384 Marseille, France
[2] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
关键词
Stiff set of partial differential equations; Kuramoto-Sivashinsky; Hele-Shaw; Birkhoff-Rott integral; Surface tension; DIFFERENTIAL-EQUATIONS;
D O I
10.1016/j.jcp.2014.01.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A general method to remove the numerical instability of partial differential equations is presented. Two equal terms are added to and subtracted from the right-hand side of the PDE: the first is a damping term and is treated implicitly, the second is treated explicitly. A criterion for absolute stability is found and the scheme is shown to be convergent. The method is applied with success to the mean curvature flow equation, the Kuramoto-Sivashinsky equation, and to the Rayleigh-Taylor instability in a Hele-Shaw cell, including the effect of surface tension. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:37 / 52
页数:16
相关论文
共 27 条
  • [1] IMPLICIT EXPLICIT METHODS FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS
    ASCHER, UM
    RUUTH, SJ
    WETTON, BTR
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) : 797 - 823
  • [2] Ayati BP, 2005, MATH COMPUT, V74, P1053, DOI 10.1090/S0025-5718-04-01696-5
  • [3] Axisymmetric surface diffusion: Dynamics and stability of self-similar pinchoff
    Bernoff, AJ
    Bertozzi, AL
    Witelski, TP
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1998, 93 (3-4) : 725 - 776
  • [4] Carrier G.F., 1966, Functions of a complex variable: theory and technique
  • [5] DISCRETE HILBERT TRANSFORM
    CIZEK, V
    [J]. IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS, 1970, AU18 (04): : 340 - +
  • [6] PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM
    CROSS, MC
    HOHENBERG, PC
    [J]. REVIEWS OF MODERN PHYSICS, 1993, 65 (03) : 851 - 1112
  • [7] Douglas J., 1971, Numerical Solution of Partial Differential Equa- tionsII, P133
  • [8] Drazin P.G., 1981, Hydrodynamic Stability, V2nd edn
  • [9] ON ROTATIONALLY SYMMETRICAL MEAN-CURVATURE FLOW
    DZIUK, G
    KAWOHL, B
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 93 (01) : 142 - 149
  • [10] KRYLOV METHODS FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    EDWARDS, WS
    TUCKERMAN, LS
    FRIESNER, RA
    SORENSEN, DC
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 110 (01) : 82 - 102