Pseudo2GO: A Graph-Based Deep Learning Method for Pseudogene Function Prediction by Borrowing Information From Coding Genes

被引:5
作者
Fan, Kunjie [1 ]
Zhang, Yan [1 ,2 ]
机构
[1] Ohio State Univ, Coll Med, Dept Biomed Informat, Columbus, OH 43210 USA
[2] Ohio State Univ, Ctr Comprehens Canc, Columbus, OH 43210 USA
关键词
pseudogene; function prediction; graph neural networks; deep learning; gene ontology; feature propagation; semi-supervised learning; PROTEIN FUNCTION; SEQUENCE; EXPRESSION; NETWORKS; RESOURCE; ONTOLOGY; HEALTH;
D O I
10.3389/fgene.2020.00807
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Pseudogenes are indicating more and more functional potentials recently, though historically were regarded as relics of evolution. Computational methods for predicting pseudogene functions on Gene Ontology is important for directing experimental discovery. However, no pseudogene-specific computational methods have been proposed to directly predict their Gene Ontology (GO) terms. The biggest challenge for pseudogene function prediction is the lack of enough features and functional annotations, making training a predictive model difficult. Considering the close functional similarity between pseudogenes and their parent coding genes that share great amount of DNA sequence, as well as that coding genes have rich annotations, we aim to predict pseudogene functions by borrowing information from coding genes in a graph-based way. Here we propose Pseudo2GO, a graph-based deep learning semi-supervised model for pseudogene function prediction. A sequence similarity graph is first constructed to connect pseudogenes and coding genes. Multiple features are incorporated into the model as the node attributes to enable the graph an attributed graph, including expression profiles, interactions with microRNAs, protein-protein interactions (PPIs), and genetic interactions. Graph convolutional networks are used to propagate node attributes across the graph to make classifications on pseudogenes. Comparing Pseudo2GO with other frameworks adapted from popular protein function prediction methods, we demonstrated that our method has achieved state-of-the-art performance, significantly outperforming other methods in terms of the M-AUPR metric.
引用
收藏
页数:9
相关论文
共 49 条
[31]   The Genotype-Tissue Expression (GTEx) project [J].
Lonsdale, John ;
Thomas, Jeffrey ;
Salvatore, Mike ;
Phillips, Rebecca ;
Lo, Edmund ;
Shad, Saboor ;
Hasz, Richard ;
Walters, Gary ;
Garcia, Fernando ;
Young, Nancy ;
Foster, Barbara ;
Moser, Mike ;
Karasik, Ellen ;
Gillard, Bryan ;
Ramsey, Kimberley ;
Sullivan, Susan ;
Bridge, Jason ;
Magazine, Harold ;
Syron, John ;
Fleming, Johnelle ;
Siminoff, Laura ;
Traino, Heather ;
Mosavel, Maghboeba ;
Barker, Laura ;
Jewell, Scott ;
Rohrer, Dan ;
Maxim, Dan ;
Filkins, Dana ;
Harbach, Philip ;
Cortadillo, Eddie ;
Berghuis, Bree ;
Turner, Lisa ;
Hudson, Eric ;
Feenstra, Kristin ;
Sobin, Leslie ;
Robb, James ;
Branton, Phillip ;
Korzeniewski, Greg ;
Shive, Charles ;
Tabor, David ;
Qi, Liqun ;
Groch, Kevin ;
Nampally, Sreenath ;
Buia, Steve ;
Zimmerman, Angela ;
Smith, Anna ;
Burges, Robin ;
Robinson, Karna ;
Valentino, Kim ;
Bradbury, Deborah .
NATURE GENETICS, 2013, 45 (06) :580-585
[32]   Pseudogene in cancer: real functions and promising signature [J].
Lu Xiao-Jie ;
Gao Ai-Mei ;
Ji Li-Juan ;
Xu Jiang .
JOURNAL OF MEDICAL GENETICS, 2015, 52 (01) :17-24
[33]   The BioGRID interaction database: 2019 update [J].
Oughtred, Rose ;
Stark, Chris ;
Breitkreutz, Bobby-Joe ;
Rust, Jennifer ;
Boucher, Lorrie ;
Chang, Christie ;
Kolas, Nadine ;
O'Donnell, Lara ;
Leung, Genie ;
McAdam, Rochelle ;
Zhang, Frederick ;
Dolma, Sonam ;
Willems, Andrew ;
Coulombe-Huntington, Jasmin ;
Chatr-aryamontri, Andrew ;
Dolinski, Kara ;
Tyers, Mike .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D529-D541
[34]   Pseudogenes: Pseudo-functional or key regulators in health and disease? [J].
Pink, Ryan Charles ;
Wicks, Kate ;
Caley, Daniel Paul ;
Punch, Emma Kathleen ;
Jacobs, Laura ;
Carter, David Raul Francisco .
RNA, 2011, 17 (05) :792-798
[35]   BAR-PLUS: the Bologna Annotation Resource Plus for functional and structural annotation of protein sequences [J].
Piovesan, Damiano ;
Martelli, Pier Luigi ;
Fariselli, Piero ;
Zauli, Andrea ;
Rossi, Ivan ;
Casadio, Rita .
NUCLEIC ACIDS RESEARCH, 2011, 39 :W197-W202
[36]   PTEN ceRNA networks in human cancer [J].
Poliseno, Laura ;
Pandolfi, Pier Paolo .
METHODS, 2015, 77-78 :41-50
[37]   A coding-independent function of gene and pseudogene mRNAs regulates tumour biology [J].
Poliseno, Laura ;
Salmena, Leonardo ;
Zhang, Jiangwen ;
Carver, Brett ;
Haveman, William J. ;
Pandolfi, Pier Paolo .
NATURE, 2010, 465 (7301) :1033-U90
[38]  
Radivojac P, 2013, NAT METHODS, V10, P221, DOI [10.1038/NMETH.2340, 10.1038/nmeth.2340]
[39]   Protein function prediction using domain families [J].
Rentzsch, Robert ;
Orengo, Christine A. .
BMC BIOINFORMATICS, 2013, 14
[40]   A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? [J].
Salmena, Leonardo ;
Poliseno, Laura ;
Tay, Yvonne ;
Kats, Lev ;
Pandolfi, Pier Paolo .
CELL, 2011, 146 (03) :353-358