Mask Formulas for Cograssmannian Kazhdan-Lusztig Polynomials

被引:7
|
作者
Jones, Brant [1 ]
Woo, Alexander [2 ]
机构
[1] James Madison Univ, Dept Math & Stat, Harrisonburg, VA 22807 USA
[2] Univ Idaho, Dept Math, Moscow, ID 83844 USA
关键词
Kazhdan-Lusztig polynomials; Deodhar elements; Bott-Samelson resolution; heaps; FULLY COMMUTATIVE ELEMENTS; SCHUBERT VARIETIES; COXETER GROUPS; SMALL RESOLUTIONS; SYMMETRIC-SPACES; ACYCLIC HEAPS; GRASSMANNIANS; LOCALIZATION; PIECES;
D O I
10.1007/s00026-012-0172-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give two constructions of sets of masks on cograssmannian permutations that can be used in Deodhar's formula for Kazhdan-Lusztig basis elements of the Iwahori-Hecke algebra. The constructions are respectively based on a formula of Lascoux-Schutzenberger and its geometric interpretation by Zelevinsky. The first construction relies on a basis of the Hecke algebra constructed from principal lower order ideals in Bruhat order and a translation of this basis into sets of masks. The second construction relies on an interpretation of masks as cells of the Bott-Samelson resolution. These constructions give distinct answers to a question of Deodhar.
引用
收藏
页码:151 / 203
页数:53
相关论文
共 50 条
  • [41] Kazhdan-Lusztig combinatorics in the moment graph setting
    Lanini, Martina
    JOURNAL OF ALGEBRA, 2012, 370 : 152 - 170
  • [42] On the Kazhdan-Lusztig order on cells and families
    Geck, Meinolf
    COMMENTARII MATHEMATICI HELVETICI, 2012, 87 (04) : 905 - 927
  • [43] A GROBNER BASIS FOR KAZHDAN-LUSZTIG IDEALS
    Woo, Alexander
    Yong, Alexander
    AMERICAN JOURNAL OF MATHEMATICS, 2012, 134 (04) : 1089 - 1137
  • [44] Some degenerations of Kazhdan-Lusztig ideals and multiplicities of Schubert varieties
    Li, Li
    Yong, Alexander
    ADVANCES IN MATHEMATICS, 2012, 229 (01) : 633 - 667
  • [45] Embedded Factor Patterns for Deodhar Elements in Kazhdan-Lusztig Theory
    Sara C. Billey
    Brant C. Jones
    Annals of Combinatorics, 2007, 11 : 285 - 333
  • [46] Computing individual Kazhdan-Lusztig basis elements
    Scott, Leonard L.
    Sprowl, Timothy
    JOURNAL OF SYMBOLIC COMPUTATION, 2016, 73 : 244 - 249
  • [47] Parabolic Kazhdan-Lusztig polynomials of type-1 for quasi-minuscule quotients
    Recupero, Francesco
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 161 : 327 - 358
  • [48] AN IDENTITY OF PARABOLIC KAZHDAN-LUSZTIG POLYNOMIALS ARISING FROM SQUARE-IRREDUCIBLE MODULES
    Gurevich, Maxim
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 110 (01) : 81 - 93
  • [49] Kazhdan-Lusztig conjecture via zastava spaces
    Braverman, Alexander
    Finkelberg, Michael
    Nakajima, Hiraku
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (787): : 45 - 78
  • [50] CONJUGACY CLASSES OF INVOLUTIONS AND KAZHDAN-LUSZTIG CELLS
    Bonnafe, Cedric
    Geck, Meinolf
    REPRESENTATION THEORY, 2014, 18 : 155 - 182