Mask Formulas for Cograssmannian Kazhdan-Lusztig Polynomials

被引:7
|
作者
Jones, Brant [1 ]
Woo, Alexander [2 ]
机构
[1] James Madison Univ, Dept Math & Stat, Harrisonburg, VA 22807 USA
[2] Univ Idaho, Dept Math, Moscow, ID 83844 USA
关键词
Kazhdan-Lusztig polynomials; Deodhar elements; Bott-Samelson resolution; heaps; FULLY COMMUTATIVE ELEMENTS; SCHUBERT VARIETIES; COXETER GROUPS; SMALL RESOLUTIONS; SYMMETRIC-SPACES; ACYCLIC HEAPS; GRASSMANNIANS; LOCALIZATION; PIECES;
D O I
10.1007/s00026-012-0172-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give two constructions of sets of masks on cograssmannian permutations that can be used in Deodhar's formula for Kazhdan-Lusztig basis elements of the Iwahori-Hecke algebra. The constructions are respectively based on a formula of Lascoux-Schutzenberger and its geometric interpretation by Zelevinsky. The first construction relies on a basis of the Hecke algebra constructed from principal lower order ideals in Bruhat order and a translation of this basis into sets of masks. The second construction relies on an interpretation of masks as cells of the Bott-Samelson resolution. These constructions give distinct answers to a question of Deodhar.
引用
收藏
页码:151 / 203
页数:53
相关论文
共 50 条
  • [31] Boolean elements in Kazhdan-Lusztig theory
    Marietti, M
    JOURNAL OF ALGEBRA, 2006, 295 (01) : 1 - 26
  • [32] Proof of Two Conjectures of Brenti and Simion on Kazhdan-Lusztig Polynomials
    Fabrizio Caselli
    Journal of Algebraic Combinatorics, 2003, 18 : 171 - 187
  • [33] Combinatorial invariance of Kazhdan-Lusztig polynomials on intervals starting from the identity
    Delanoy, Ewan
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2006, 24 (04) : 437 - 463
  • [34] Parabolic Kazhdan-Lusztig R-polynomials for Hermitian symmetric pairs
    Brenti, Francesco
    JOURNAL OF ALGEBRA, 2007, 318 (01) : 412 - 429
  • [35] Combinatorial invariance of Kazhdan-Lusztig polynomials on intervals starting from the identity
    Ewan Delanoy
    Journal of Algebraic Combinatorics, 2006, 24 : 437 - 463
  • [36] Kazhdan-Lusztig R-polynomials, combinatorial invariance, and hypercube decompositions
    Brenti, Francesco
    Marietti, Mario
    MATHEMATISCHE ZEITSCHRIFT, 2025, 309 (02)
  • [37] Combinatorial proof of the inversion formula on the Kazhdan-Lusztig R-polynomials
    Chen, William Y. C.
    Fan, Neil J. Y.
    Guo, Alan J. X.
    Guo, Peter L.
    Huang, Harry H. Y.
    Zhong, Michael X. X.
    MATHEMATISCHE ZEITSCHRIFT, 2014, 277 (3-4) : 1017 - 1025
  • [38] The equivariant Kazhdan-Lusztig polynomial of a matroid
    Gedeon, Katie
    Proudfoot, Nicholas
    Young, Benjamin
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2017, 150 : 267 - 294
  • [39] GENERALIZED INDUCTION OF KAZHDAN-LUSZTIG CELLS
    Guilhot, Jeremie
    ANNALES DE L INSTITUT FOURIER, 2009, 59 (04) : 1385 - 1412
  • [40] On the minimal power of q in a Kazhdan-Lusztig polynomial
    Gaetz, Christian
    Gao, Yibo
    ADVANCES IN MATHEMATICS, 2024, 457