Seizure anticipation: from algorithms to clinical practice

被引:57
作者
Mormann, F
Elger, CE
Lehnertz, K
机构
[1] Univ Bonn, Dept Epileptol, D-53105 Bonn, Germany
[2] Univ Bonn, Helmholtz Inst Radiat & Nucl Phys, D-53105 Bonn, Germany
关键词
methodology; performance; seizure prediction; statistical validation;
D O I
10.1097/01.wco.0000218237.52593.bc
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Purpose of review Our understanding of the mechanisms that lead to the occurrence of epileptic seizures is rather incomplete. If it were possible to identify preictal precursors from the EEG of epilepsy patients, therapeutic possibilities could improve dramatically. Studies on seizure prediction have advanced from preliminary descriptions of preictal phenomena via proof of principle studies and controlled studies to studies on continuous multi-day recordings. Recent findings Following mostly promising early reports, recent years have witnessed a debate over the reproducibility of results and suitability of approaches. The current literature is inconclusive as to whether seizures are predictable by prospective algorithms. Prospective out-of-sample studies including a statistical validation are missing. Nevertheless, there are indications of a superior performance for approaches characterizing relations between different brain regions. Summary Prediction algorithms must be proven to perform better than a random predictor before prospective clinical trials involving seizure intervention techniques in patients can be justified.
引用
收藏
页码:187 / 193
页数:7
相关论文
共 55 条
[1]   Testing the null hypothesis of the nonexistence of a preseizure state [J].
Andrzejak, RG ;
Mormann, F ;
Kreuz, T ;
Rieke, C ;
Kraskov, A ;
Elger, CE ;
Lehnertz, K .
PHYSICAL REVIEW E, 2003, 67 (01) :4
[2]   How well can epileptic seizures be predicted? An evaluation of a nonlinear method [J].
Aschenbrenner-Scheibe, R ;
Maiwald, T ;
Winterhalder, M ;
Voss, HU ;
Timmer, J ;
Schulze-Bonhage, A .
BRAIN, 2003, 126 :2616-2626
[3]   Spectral analysis of stereo-electroencephalograms: preictal slowing in partial epilepsies [J].
Cerf, R ;
el Ouasdad, EH .
BIOLOGICAL CYBERNETICS, 2000, 83 (05) :399-405
[4]   Performance of a seizure warning algorithm based on the dynamics of intracranial EEG [J].
Chaovalitwongse, W ;
Lasemidis, LD ;
Pardalos, PM ;
Carney, PR ;
Shiau, DS ;
Sackellares, JC .
EPILEPSY RESEARCH, 2005, 64 (03) :93-113
[5]   Spatio-temporal dynamics prior to neocortical seizures:: Amplitude versus phase couplings [J].
Chávez, M ;
Quyen, ML ;
Navarro, Q ;
Baulac, M ;
Martinerie, J .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2003, 50 (05) :571-583
[6]   A multi-feature and multi-channel univariate selection process for seizure prediction [J].
D'Alessandro, M ;
Vachtsevanos, G ;
Esteller, R ;
Echauz, J ;
Cranstoun, S ;
Worrell, G ;
Parish, L ;
Litt, B .
CLINICAL NEUROPHYSIOLOGY, 2005, 116 (03) :506-516
[7]   Epileptic seizure prediction using hybrid feature selection over multiple intracranial EEG electrode contacts: A report of four patients [J].
D'Alessandro, M ;
Esteller, R ;
Vachtsevanos, G ;
Hinson, A ;
Echauz, J ;
Litt, B .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2003, 50 (05) :603-615
[8]  
De Clercq W, 2003, LANCET, V361, P971, DOI 10.1016/S0140-6736(03)12780-8
[9]   Seizure prediction using scalp electroencephalogram [J].
Drury, I ;
Smith, B ;
Li, DZ ;
Savit, R .
EXPERIMENTAL NEUROLOGY, 2003, 184 :S9-S18
[10]   Seizure prediction by non-linear time series analysis of brain electrical activity [J].
Elger, CE ;
Lehnertz, K .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1998, 10 (02) :786-789