Coumarin dyes for dye-sensitized solar cells: A long-range-corrected density functional study

被引:174
作者
Wong, Bryan M. [1 ]
Cordaro, Joseph G. [1 ]
机构
[1] Sandia Natl Labs, Dept Chem Mat, Livermore, CA 94551 USA
基金
美国能源部;
关键词
charge exchange; coupled cluster calculations; density functional theory; dyes; excited states; HF calculations; molecular moments; oscillator strengths;
D O I
10.1063/1.3025924
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The excited-state properties in a series of coumarin solar cell dyes are investigated with a long-range-corrected (LC) functional which asymptotically incorporates Hartree-Fock exchange. Using time-dependent density functional theory (TDDFT), we calculate excitation energies, oscillator strengths, and excited-state dipole moments in each of the dyes as a function of the range-separation parameter mu. To investigate the acceptable range of mu and to assess the quality of the LC-TDDFT formalism, an extensive comparison is made between LC-BLYP excitation energies and approximate coupled-cluster singles and doubles calculations. When using a properly optimized value of mu, we find that the LC technique provides a consistent picture of charge-transfer excitations as a function of molecular size. In contrast, we find that the widely used B3LYP hybrid functional severely overestimates excited-state dipole moments and underestimates vertical excitation energies, especially for larger dye molecules. The results of the present study emphasize the importance of long-range exchange corrections in TDDFT for investigating the excited-state properties in solar cell dyes.
引用
收藏
页数:8
相关论文
共 51 条
[1]   Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism [J].
Adachi, M ;
Murata, Y ;
Takao, J ;
Jiu, JT ;
Sakamoto, M ;
Wang, FM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (45) :14943-14949
[2]  
Adamson RD, 1999, J COMPUT CHEM, V20, P921, DOI 10.1002/(SICI)1096-987X(19990715)20:9<921::AID-JCC3>3.0.CO
[3]  
2-K
[4]  
Barbe CJ, 1997, J AM CERAM SOC, V80, P3157, DOI 10.1111/j.1151-2916.1997.tb03245.x
[5]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[6]   GOOD SEMICONDUCTOR BAND-GAPS WITH A MODIFIED LOCAL-DENSITY APPROXIMATION [J].
BYLANDER, DM ;
KLEINMAN, L .
PHYSICAL REVIEW B, 1990, 41 (11) :7868-7871
[7]   Density functional theory for charge transfer: The nature of the N-bands of porphyrins and chlorophylls revealed through CAM-B3LYP, CASPT2, and SAC-CI calculations [J].
Cai, Zheng-Li ;
Crossley, Maxwell J. ;
Reimers, Jeffrey R. ;
Kobayashi, Rika ;
Amos, Roger D. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (31) :15624-15632
[8]   Excited state geometry optimizations by analytical energy gradient of long-range corrected time-dependent density functional theory [J].
Chiba, M ;
Tsuneda, T ;
Hirao, K .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (14)
[9]   Failure of time-dependent density functional theory for long-range charge-transfer excited states: The zincbacteriochlorin-bacterlochlorin and bacteriochlorophyll-spheroidene complexes [J].
Dreuw, A ;
Head-Gordon, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (12) :4007-4016
[10]  
Gill PMW, 1996, MOL PHYS, V88, P1005, DOI 10.1080/00268979609484488