Tetravalent edge-transitive graphs of order p 2 q

被引:16
作者
Pan JiangMin [1 ]
Liu Yin [1 ]
Huang ZhaoHong [1 ]
Liu ChenLong [1 ]
机构
[1] Yunnan Univ, Dept Math, Kunming 650031, Peoples R China
基金
中国国家自然科学基金;
关键词
edge-transitive graph; automorphism group; normal Cayley graph; CAYLEY-GRAPHS; SYMMETRICAL GRAPHS; PRIMITIVE GRAPHS; PRODUCT;
D O I
10.1007/s11425-013-4708-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph is called edge-transitive if its full automorphism group acts transitively on its edge set. In this paper, by using classification of finite simple groups, we classify tetravalent edge-transitive graphs of order p (2) q with p, q distinct odd primes. The result generalizes certain previous results. In particular, it shows that such graphs are normal Cayley graphs with only a few exceptions of small orders.
引用
收藏
页码:293 / 302
页数:10
相关论文
共 36 条
[1]  
Alspach B., 1992, J ALGEBR COMB, V1, P275
[2]  
[Anonymous], 1967, ENDLICHE GRUPPEN
[3]  
[Anonymous], 1982, U SERIES MATH
[4]  
Biggs N., 1993, Algebraic graph theory
[5]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[6]   Tetravalent edge-transitive Cayley graphs with odd number of vertices [J].
Cai, HL ;
Zai, PL ;
Hua, Z .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (01) :164-181
[7]  
[陈松良 Chen Songliang], 2010, [山西大学学报. 自然科学版, Journal of Shanxi University], V33, P493
[8]  
Conway J. H., 1985, ATLAS of Finite Groups
[9]  
Dixon D, 1991, PERMUTATION GROUPS
[10]   On 2-arc-transitive covers of complete graphs [J].
Du, SF ;
Marusic, D ;
Waller, AO .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 74 (02) :276-290