Semiautomatic Segmentation and Radiomics for Dual-Energy CT: A Pilot Study to Differentiate Benign and Malignant Hepatic Lesions

被引:36
作者
Homayounieh, Fatemeh [1 ]
Singh, Ramandeep [1 ]
Nitiwarangkul, Chayanin [1 ,2 ]
Lades, Felix [3 ]
Schmidt, Bernhard [3 ]
Sedlmair, Martin [3 ]
Saini, Sanjay [1 ]
Kalra, Mannudeep K. [1 ]
机构
[1] Harvard Med Sch, Massachusetts Gen Hosp, Dept Radiol, 75 Blossom Ct,Rm 248, Boston, MA 02114 USA
[2] Ramathibodi Hosp, Dept Diagnost & Therapeut Radiol, Bangkok, Thailand
[3] Siemens Healthineers, Imaging & Therapy Syst, CT & Radiat Oncol, Forchheim, Germany
关键词
computer-assisted; dual-energy CT; image processing; liver lesions; radiomics; segmentation; LIVER-LESIONS; HEPATOCELLULAR-CARCINOMA; IMAGES;
D O I
10.2214/AJR.19.22164
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
OBJECTIVE. This study assessed a machine learning-based dual-energy CT (DECT) tumor analysis prototype for semiautomatic segmentation and radiomic analysis of benign and malignant liver lesions seen on contrast-enhanced DECT. MATERIALS AND METHODS. This institutional review board-approved study included 103 adult patients (mean age, 65 +/- 15 [SD] years; 53 men, 50 women) with benign (60/103) or malignant (43/103) hepatic lesions on contrast-enhanced dual-source DECT. Most malignant lesions were histologically proven; benign lesions were either stable on follow-up CT or had characteristic benign features on MRI. Low- and high-kilovoltage datasets were deidentified, exported offline, and processed with the DECT tumor analysis for semiautomatic segmentation of the volume and rim of each liver lesion. For each segmentation, contrast enhancement and iodine concentrations as well as radiomic features were derived for different DECT image series. Statistical analyses were performed to determine if DECT tumor analysis and radiomics can differentiate benign from malignant liver lesions. RESULTS. Normalized iodine concentration and mean iodine concentration in the benign and malignant lesions were significantly different (p < 0.0001-0.0084; AUC, 0.6950.856). Iodine quantification and radiomic features from lesion rims (AUC, <= 0.877) had higher accuracy for differentiating liver lesions compared with the values from lesion volumes (AUC, <= 0.856). There was no difference in the accuracies of DECT iodine quantification (AUC, 0.91) and radiomics (AUC, 0.90) for characterizing liver lesions. CONCLUSION. DECT radiomics were more accurate than iodine quantification for differentiating solid benign and malignant hepatic lesions.
引用
收藏
页码:398 / 405
页数:8
相关论文
共 19 条
[1]   Pathologic stratification of operable lung adenocarcinoma using radiomics features extracted from dual energy ct images [J].
Bae, Jung Min ;
Jeong, Ji Yun ;
Lee, Ho Yun ;
Sohn, Insuk ;
Kim, Hye Seung ;
Son, Ji Ye ;
Kwon, O. Jung ;
Choi, Joon Young ;
Lee, Kyung Soo ;
Shim, Young Mog .
ONCOTARGET, 2017, 8 (01) :523-535
[2]   Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas [J].
Beig, Niha ;
Khorrami, Mohammadhadi ;
Alilou, Mehdi ;
Prasanna, Prateek ;
Braman, Nathaniel ;
Orooji, Mahdi ;
Rakshit, Sagar ;
Bera, Kaustav ;
Rajiah, Prabhakar ;
Ginsberg, Jennifer ;
Donatelli, Christopher ;
Thawani, Rajat ;
Yang, Michael ;
Jacono, Frank ;
Tiwari, Pallavi ;
Velcheti, Vamsidhar ;
Gilkeson, Robert ;
Linden, Philip ;
Madabhushi, Anant .
RADIOLOGY, 2019, 290 (03) :783-792
[3]   Evaluation of manual vs semi-automated delineation of liver lesions on CT images [J].
Bellon, E ;
Feron, M ;
Maes, F ;
VanHoe, L ;
Delaere, D ;
Haven, F ;
Sunaert, S ;
Baert, AL ;
Marchal, G .
EUROPEAN RADIOLOGY, 1997, 7 (03) :432-438
[4]   Iodine quantification to distinguish hepatic neuroendocrine tumor metastasis from hepatocellular carcinoma at dual-source dual-energy liver CT [J].
Kaltenbach, Benjamin ;
Wichmann, Julian L. ;
Pfeifer, Sophia ;
Albrecht, Moritz H. ;
Booz, Christian ;
Lenga, Lukas ;
Hammerstingl, Renate ;
Dangelo, Tommaso ;
Vogl, Thomas J. ;
Martin, Simon S. .
EUROPEAN JOURNAL OF RADIOLOGY, 2018, 105 :20-24
[5]   Feasibility of CT radiomics to predict treatment response of individual liver metastases in esophagogastric cancer patients [J].
Klaassen, Remy ;
Larue, Ruben T. H. M. ;
Mearadji, Banafsche ;
van der Woude, Stephanie O. ;
Stoker, Jaap ;
Lambin, Philippe ;
van Laarhoven, Hanneke W. M. .
PLOS ONE, 2018, 13 (11)
[6]   Radiomics: the process and the challenges [J].
Kumar, Virendra ;
Gu, Yuhua ;
Basu, Satrajit ;
Berglund, Anders ;
Eschrich, Steven A. ;
Schabath, Matthew B. ;
Forster, Kenneth ;
Aerts, Hugo J. W. L. ;
Dekker, Andre ;
Fenstermacher, David ;
Goldgof, Dmitry B. ;
Hall, Lawrence O. ;
Lambin, Philippe ;
Balagurunathan, Yoganand ;
Gatenby, Robert A. ;
Gillies, Robert J. .
MAGNETIC RESONANCE IMAGING, 2012, 30 (09) :1234-1248
[7]   Differentiation of Small Hepatic Hemangioma from Small Hepatocellular Carcinoma: Recently Introduced Spectral CT Method [J].
Lv, Peijie ;
Lin, Xiao Zhu ;
Li, Jianying ;
Li, Weixia ;
Chen, Kemin .
RADIOLOGY, 2011, 259 (03) :720-729
[8]   Influence of CT acquisition and reconstruction parameters on radiomic feature reproducibility [J].
Midya, Abhishek ;
Chakraborty, Jayasree ;
Gonen, Mithat ;
Do, Richard K. G. ;
Simpson, Amber L. .
JOURNAL OF MEDICAL IMAGING, 2018, 5 (01)
[9]   Simultaneous dual-contrast multi-phase liver imaging using spectral photon-counting computed tomography: a proof-of-concept study [J].
Muenzel D. ;
Daerr H. ;
Proksa R. ;
Fingerle A.A. ;
Kopp F.K. ;
Douek P. ;
Herzen J. ;
Pfeiffer F. ;
Rummeny E.J. ;
Noël P.B. .
European Radiology Experimental, 1 (1)
[10]   Material density iodine images in dual-energy CT: Detection and characterization of hypervascular liver lesions compared to magnetic resonance imaging [J].
Muenzel, Daniela ;
Lo, Grace C. ;
Yu, Hei Shun ;
Parakh, Anushri ;
Patino, Manuel ;
Kambadakone, Avinash ;
Rummeny, Ernst J. ;
Sahani, Dushyant V. .
EUROPEAN JOURNAL OF RADIOLOGY, 2017, 95 :300-306