Positive semidefinite zero forcing

被引:26
作者
Ekstrand, Jason [1 ]
Erickson, Craig [1 ]
Hall, H. Tracy [2 ]
Hay, Diana [1 ]
Hogben, Leslie [1 ,3 ]
Johnson, Ryan [1 ]
Kingsley, Nicole [1 ]
Osborne, Steven [1 ]
Peters, Travis [1 ]
Roat, Jolie [1 ]
Ross, Arianne [1 ]
Row, Darren D. [4 ]
Warnberg, Nathan [1 ]
Young, Michael [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
[3] Amer Inst Math, Palo Alto, CA 94306 USA
[4] Upper Iowa Univ, Sch Sci & Math, Fayette, IA 52142 USA
基金
美国国家科学基金会;
关键词
Zero forcing number; Maximum nullity; Minimum rank; Positive semidefinite; Matrix; Graph; MINIMUM-RANK; MATRICES; NULLITY; GRAPHS;
D O I
10.1016/j.laa.2013.05.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The positive semidefinite zero forcing number Z(+)(G) of a graph G was introduced in Barioli et al. (2010) [4]. We establish a variety of properties of Z(+)(G): Any vertex of G can be in a minimum positive semidefinite zero forcing set (this is not true for standard zero forcing). The graph parameters tw(G) (tree-width), Z(+)(G), and Z(G) (standard zero forcing number) all satisfy the Graph Complement Conjecture (see Barioli et al. (2012) [3]). Graphs having extreme values of the positive semidefinite zero forcing number are characterized. The effect of various graph operations on positive semidefinite zero forcing number and connections with other graph parameters are studied. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1862 / 1874
页数:13
相关论文
共 21 条
  • [1] [Anonymous], 2006, AM I MATH WORKSH SPE
  • [2] Zero forcing sets and the minimum rank of graphs
    Barioli, Francesco
    Barrett, Wayne
    Butler, Steve
    Cioaba, Sebastian M.
    Cvetkovic, Dragos
    Fallat, Shaun M.
    Godsil, Chris
    Haemers, Willem
    Hogben, Leslie
    Mikkelson, Rana
    Narayan, Sivaram
    Pryporova, Olga
    Sciriha, Irene
    So, Wasin
    Stevanovic, Dragan
    van der Holst, Hein
    Vander Meulen, Kevin N.
    Wehe, Amy Wangsness
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) : 1628 - 1648
  • [3] Barioli F, 2011, ELECTRON J LINEAR AL, V22, P10
  • [4] On the graph complement conjecture for minimum rank
    Barioli, Francesco
    Barrett, Wayne
    Fallat, Shaun M.
    Hall, H. Tracy
    Hogben, Leslie
    van der Holst, Hein
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (12) : 4373 - 4391
  • [5] Zero forcing parameters and minimum rank problems
    Barioli, Francesco
    Barrett, Wayne
    Fallat, Shaun M.
    Hall, H. Tracy
    Hogben, Leslie
    Shader, Bryan
    van den Driessche, P.
    van der Holst, Hein
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (02) : 401 - 411
  • [6] Barrett W, 2004, ELECTRON J LINEAR AL, V11, P258
  • [7] Barrett W, 2009, ELECTRON J LINEAR AL, V18, P530
  • [8] ON THE MINIMUM RANK AMONG POSITIVE SEMIDEFINITE MATRICES WITH A GIVEN GRAPH
    Booth, Matthew
    Hackney, Philip
    Harris, Benjamin
    Johnson, Charles R.
    Lay, Margaret
    Mitchell, Lon H.
    Narayan, Sivaram K.
    Pascoe, Amanda
    Steinmetz, Kelly
    Sutton, Brian D.
    Wang, Wendy
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (02) : 731 - 740
  • [9] Borie R.B., 2004, HDB GRAPH THEORY, P99
  • [10] BRUALDI R, 2007, AIM WORKSH SPECTR FA