On the semidiscretization and linearization of pseudoparabolic von Karman system for viscoelastic plates

被引:7
作者
Bock, I [1 ]
机构
[1] Slovak Univ Technol Bratislava, Dept Math, Fac Elect Engn & Informat Technol, Bratislava 81219, Slovakia
关键词
von Karman equations; viscoelastic plate; pseudoparabolic problem; semidiscretization; existence; uniqueness; linearization;
D O I
10.1002/mma.700
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with the system of quasistationary von Karman equations describing moderately large deflections of thin viscoelastic plates. We concentrate on a differential-type material, which gives rise to a quasistationary system with a linear pseudoparabolic main part and a non-linear differential term. This model arises when considering a special relaxation function involving only one exponential function. The existence and the uniqueness of a solution as the limit of a semidiscrete approximation is verified. The conditions for a linearization of these approximations are stated. Copyright (c) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:557 / 573
页数:17
相关论文
共 13 条
[1]   VON KARMANS EQUATIONS AND BUCKLING OF A THIN ELASTIC PLATE 2 PLATE WITH GENERAL EDGE CONDITIONS [J].
BERGER, MS ;
FIFE, PC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1968, 21 (03) :227-&
[2]   On nonstationary von Karman equations [J].
Bock, I .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 (10) :559-571
[3]  
BRILLA J, 1979, P IN T C EQ 4 PRAH, V4, P46
[4]  
Christensen R., 1982, THEORY VISCOELASTICI
[5]  
Ciarlet P., 1980, EQUATIONS KARMAN
[6]  
CIARLET PG, 1980, ARCH RATION MECH AN, V73, P349, DOI 10.1007/BF00247674
[7]   A JUSTIFICATION OF NONLINEAR PROPERLY INVARIANT PLATE THEORIES [J].
FOX, DD ;
RAOULT, A ;
SIMO, JC .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 124 (02) :157-199
[8]  
Kaur J., 1985, Method of rothe in evolution equations
[9]  
KNIGHTLY GH, 1967, ARCH RATION MECH AN, V27, P65
[10]  
Lions J. L., 1969, QUELQUES METHODES RE