Statistical inference for right-censored data with nonignorable missing censoring indicators

被引:1
作者
Sun ZhiHua [1 ]
Xie TianFa [2 ]
Liang Hua [3 ]
机构
[1] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
[3] Univ Rochester, Dept Biostat & Computat Biol, Rochester, NY 14642 USA
基金
美国国家科学基金会; 中国国家自然科学基金; 中国博士后科学基金;
关键词
MAR mechanism testing; nonignorable missing censoring indicators; survival function; quasi-likelihood; PRODUCT-LIMIT ESTIMATORS; NONPARAMETRIC-ESTIMATION; REGRESSION; FAILURE; MODELS;
D O I
10.1007/s11425-012-4492-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the statistical inference for right-censored data when censoring indicators are missing but nonignorable, and propose an adjusted imputation product-limit estimator. The proposed estimator is shown to be consistent and converges to a Gaussian process. Furthermore, we develop an empirical process-based testing method to check the MAR (missing at random) mechanism, and establish asymptotic properties for the proposed test statistic. To determine the critical value of the test, a consistent model-based bootstrap method is suggested. We conduct simulation studies to evaluate the numerical performance of the proposed method and compare it with existing methods. We also analyze a real data set from a breast cancer study for an illustration.
引用
收藏
页码:1263 / 1278
页数:16
相关论文
共 15 条
[1]  
[Anonymous], 1996, Local polynomial modelling and its applications
[3]   On semiparametric random censorship models [J].
Dikta, G .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 66 (02) :253-279
[4]   UNIQUE CONSISTENT SOLUTION TO LIKELIHOOD EQUATIONS [J].
FOUTZ, RV .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1977, 72 (357) :147-148
[5]   Semiparametric estimators for the regression coefficients in the linear transformation competing risks model with missing cause of failure [J].
Gao, GZ ;
Tsiatis, AA .
BIOMETRIKA, 2005, 92 (04) :875-891
[6]   Analysis of competing risks survival data when some failure types are missing [J].
Goetghebeur, E ;
Ryan, L .
BIOMETRIKA, 1995, 82 (04) :821-833
[7]   NONPARAMETRIC-ESTIMATION FROM INCOMPLETE OBSERVATIONS [J].
KAPLAN, EL ;
MEIER, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1958, 53 (282) :457-481
[8]   THE PRODUCT-LIMIT ESTIMATOR AND THE BOOTSTRAP - SOME ASYMPTOTIC REPRESENTATIONS [J].
LO, SH ;
SINGH, K .
PROBABILITY THEORY AND RELATED FIELDS, 1986, 71 (03) :455-465
[9]   ESTIMATING A SURVIVAL FUNCTION WITH INCOMPLETE CAUSE-OF-DEATH DATA [J].
LO, SH .
JOURNAL OF MULTIVARIATE ANALYSIS, 1991, 39 (02) :217-235
[10]   Semiparametric transformation models for the case-cohort study [J].
Lu, WB ;
Tsiatis, AA .
BIOMETRIKA, 2006, 93 (01) :207-214