On the Stable Perturbation and Nashed's Condition for Generalized Inverses

被引:6
作者
Ding, Jiu [1 ]
Huang, Qianglian [2 ]
机构
[1] Univ Southern Mississippi, Sch Math & Nat Sci, Hattiesburg, MS 39406 USA
[2] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized inverse; Nashed's condition; stable perturbation; LINEAR-OPERATORS;
D O I
10.1080/01630563.2020.1813164
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T be a bounded linear operator from a Banach space to a Banach space with closed range and let (T) over bar = T + delta T: Nashed's condition is that oI thorn (T + delta TT+)T-1 maps the null space of T into the range of T. The stable perturbation means that the intersection of the range of (T) over bar and the null space of the generalized inverse of T is {0}. We show that the stable perturbation is the same as Nashed's condition in the sense of duality.
引用
收藏
页码:1761 / 1768
页数:8
相关论文
共 50 条
  • [41] Characterizations of Generalized Inverses by Clean Elements
    Shi, Guiqi
    Chen, Jianlong
    Zhou, Yukun
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2025, 22 (02)
  • [42] Generalized inverses of centralizers of semiprime rings
    Chaudhry M.A.
    Samman M.S.
    [J]. aequationes mathematicae, 2006, 71 (3) : 246 - 252
  • [43] Generalized inverses of multivalued linear operators
    Yosra Chamkha
    Marwa Kammoun
    Melik Lajnef
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2024, 73 : 241 - 257
  • [44] The perturbation of the group inverse under the stable perturbation in a unital ring
    Du, Fapeng
    Xue, Yifeng
    [J]. FILOMAT, 2013, 27 (01) : 65 - 74
  • [45] CHOI-DAVIS-JENSEN'S INEQUALITY AND GENERALIZED INVERSES OF LINEAR OPERATORS
    Niezgoda, Marek
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 406 - 416
  • [46] ON THE PERTURBATION OF OUTER INVERSES OF LINEAR OPERATORS IN BANACH SPACES
    Zhu, Lanping
    Pan, Weiwei
    Huang, Qianglian
    Yang, Shi
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2018, 9 (03): : 344 - 353
  • [47] Characterizations of Generalized Inverses by Clean ElementsCharacterizations of Generalized Inverses by Clean ElementsG. Shi et al.
    Guiqi Shi
    Jianlong Chen
    Yukun Zhou
    [J]. Mediterranean Journal of Mathematics, 2025, 22 (2)
  • [48] On the Uniform Boundedness and Convergence of Generalized, Moore-Penrose and Group Inverses
    Zhu, Lanping
    Zhu, Changpeng
    Huang, Qianglian
    [J]. FILOMAT, 2017, 31 (19) : 5993 - 6003
  • [49] Partial isometries and generalized inverses of linear relations
    Garbouj, Zied
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 2023, 89 (1-2): : 293 - 315
  • [50] The representations and computations of generalized inverses , and the group inverse
    Ma, Jie
    Qi, Linlin
    Li, Yongshu
    [J]. CALCOLO, 2017, 54 (04) : 1147 - 1168