Interfacial Tensile Bond between Substrate Concrete and Repairing Mortar under Freeze-Thaw Cycles

被引:21
|
作者
Qian, Ye [1 ]
Zhang, Dawei [2 ]
Ueda, Tamon [3 ]
机构
[1] Columbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA
[2] Zhejiang Univ, Coll Civil Engn & Architecture, Hangzhou, Zhejiang, Peoples R China
[3] Hokkaido Univ, Div Engn & Policy Sustainable Environm, Sapporo, Hokkaido, Japan
关键词
CEMENT PASTE; PORTLAND-CEMENT; STRENGTH; MICROSTRUCTURE; DURABILITY; MECHANISMS; AGGREGATE; POLYMERS; ZONE; FILM;
D O I
10.3151/jact.14.421
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Freeze-thaw cycle is one of the major damage factors of concrete patch repair. Not only the material itself but also the adhesive interface is damaged under freeze-thaw cycles (FTC). Air-entraining agent has long been used to increase the freeze-thaw resistance of concrete materials. However, the effect of air-entraining agent on the adhesive interface has not been explored. The degradation mechanism and failure mode of concrete repair system under FTC has not been studied, either. In this study, three kinds of substrate concrete were casted and repaired by two kinds of ordinary Portland cement mortars and one kind of polymer-modified cement mortar (PCM), respectively. With up to 150 FTC, splitting tensile strength and failure modes of composite specimens were experimented. Results showed that air-entraining agent in the repairing mortar greatly influenced adhesive tensile strength under FTC. The water cement ratio and air-entraining agent of substrate concrete insignificantly affected the adhesive interface, but affects failure mode. The adhesive tensile strength of PCM-repaired composite specimens decreased faster than that of ordinary Portland cement mortar-repaired composite specimens although PCM itself showed stronger freeze-thaw resistance than ordinary mortar.
引用
收藏
页码:421 / 432
页数:12
相关论文
共 50 条
  • [41] Bond Performance of Anti-Corrosion Bar Embedded in Ceramsite Concrete in Freeze-Thaw Cycles and Corrosive Environments
    Liu, Yan
    Zhu, Qiang
    Teng, Jinhua
    Deng, Peng
    Sun, Yan
    BUILDINGS, 2023, 13 (04)
  • [42] Microstructural damage characterization of concrete under freeze-thaw action
    Luo, Q.
    Liu, D. X.
    Qiao, Pizhong
    Feng, Q. G.
    Sun, L. Z.
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2018, 27 (10) : 1551 - 1568
  • [43] Resistance of Concrete with Crystalline Hydrophilic Additives to Freeze-Thaw Cycles
    Gojevic, Anita
    Grubesa, Ivanka Netinger
    Juradin, Sandra
    Pecur, Ivana Banjad
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [44] Experimental study on the bond behavior of the CFRP plate-ECC-concrete composite interface under freeze-thaw cycles
    Zhang, Pu
    Shang, Jia-Qi
    Fan, Jia-Jun
    Chen, Qi-Zhuang
    Zhu, Hong
    Gao, Dan-Ying
    Sheikh, Shamim Ahmed
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 316
  • [45] Damage Model of Concrete Durability under Coupled Action of Stress and Freeze-thaw Cycles
    Zheng Dan
    Zhou Jianting
    ADVANCES IN BUILDING MATERIALS, PTS 1-3, 2011, 261-263 : 182 - +
  • [46] Experimental Study of Recycled Concrete under Freeze-Thaw Conditions
    Jierula, Alipujiang
    Wu, Cong
    Fu, Zhixuan
    Niyazi, Hushitaer
    Li, Haodong
    MATERIALS, 2024, 17 (16)
  • [47] Damage Mechanism and Modeling of Concrete in Freeze-Thaw Cycles: A Review
    Guo, Jinjun
    Sun, Wenqi
    Xu, Yaoqun
    Lin, Weiqi
    Jing, Weidong
    BUILDINGS, 2022, 12 (09)
  • [48] Bond strength of different strengthening systems - Concrete elements under freeze-thaw cycles and salt water immersion exposure
    Al-Mahmoud, Firas
    Mechling, Jean-Michel
    Shaban, Mohamed
    CONSTRUCTION AND BUILDING MATERIALS, 2014, 70 : 399 - 409
  • [49] Performance Evolution of Recycled Aggregate Concrete under the Coupled Effect of Freeze-Thaw Cycles and Sulfate Attack
    Jia, Pu
    Li, Lang
    Zhou, Jin
    Zhang, Di
    Guan, Zhongwei
    Dong, Jiangfeng
    Wang, Qingyuan
    APPLIED SCIENCES-BASEL, 2022, 12 (14):
  • [50] Evolution and damage threshold of pores for natural pumice concrete under freeze-thaw cycles
    Wang, Xiaoxiao
    Dong, Yufei
    Jing, Lei
    Yan, Changwang
    Liu, Shuguang
    MAGAZINE OF CONCRETE RESEARCH, 2023, 76 (05) : 245 - 260