POSITIVE SOLUTIONS FOR THE PERIODIC SCALAR p-LAPLACIAN: EXISTENCE AND UNIQUENESS

被引:1
|
作者
Kyritsi, Sophia Th. [1 ]
Papageorgiou, Nikolaos S. [2 ]
机构
[1] Hellen Naval Acad, Dept Math, Piraeus 18539, Greece
[2] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2012年 / 16卷 / 04期
关键词
Scalar p-Laplacian; Unilateral growth; Existence and uniqueness of positive solutions; Weighted eigenvalues; EIGENVALUES;
D O I
10.11650/twjm/1500406738
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a nonlinear periodic problem driven by the scalar p-Laplacian. The reaction term is a Caratheodory function f (t, x) which satisfies only a unilateral growth condition in the x-variable. Assuming strict monotonicity for the quotient f (t, x)/x(p-1)using variational methods coupled with suitable truncation techniques, we produce necessary and sufficient conditions for the existence and uniqueness of positive solutions.
引用
收藏
页码:1345 / 1361
页数:17
相关论文
共 50 条
  • [41] Eigenvalue estimates for the drifting Laplacian and the p-Laplacian on submanifolds of warped products
    Lu, Wei
    Mao, Jing
    Wu, Chuan-Xi
    Zeng, Ling-Zhong
    APPLICABLE ANALYSIS, 2021, 100 (11) : 2275 - 2300
  • [42] Global Bifurcation for Fractional p-Laplacian and an Application
    Del Pezzo, Leandro M.
    Quaas, Alexander
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2016, 35 (04): : 411 - 447
  • [43] On fractional p-Laplacian problems with local conditions
    Li, Anran
    Wei, Chongqing
    ADVANCES IN NONLINEAR ANALYSIS, 2018, 7 (04) : 485 - 496
  • [44] The second eigenfunction of the p-Laplacian on the disk is not radial
    Benedikt, Jiri
    Drabek, Pavel
    Girg, Petr
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (12) : 4422 - 4435
  • [45] The Limit as p → 1 of the Higher Eigenvalues of the p-Laplacian Operator -Δp
    Sabina De Lis, Jost C.
    Segura De Leon, Sergio
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2021, 70 (04) : 1395 - 1439
  • [46] Existence of an unbounded branch of the set of solutions for Neumann problems involving the p(x)-Laplacian
    Hwang, Byung-Hoon
    Lee, Seung Dae
    Kim, Yun-Ho
    BOUNDARY VALUE PROBLEMS, 2014,
  • [47] Weighted p-Laplacian problems on a half-line
    Binding, Paul A.
    Browne, Patrick J.
    Watson, Bruce A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (02) : 1372 - 1391
  • [48] Eigenvalues of the p-Laplacian in fractal strings with indefinite weights
    Bonder, JF
    Pinasco, JP
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 308 (02) : 764 - 774
  • [49] A nonlinear scattering length formula in the p-Laplacian framework
    Hu, Xinyu
    CHAOS SOLITONS & FRACTALS, 2025, 192
  • [50] On the maximal eigenvalue of signless P-Laplacian matrix for a graph
    Mei, Ying
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 2, 2009, : 169 - 172