共 50 条
Aqueous synthesis of polyhedral "brick-like'' iron oxide nanoparticles for hyperthermia and T2 MRI contrast enhancement
被引:14
作者:
Worden, Matthew
[1
]
Bruckman, Michael A.
[2
]
Kim, Min-Ho
[3
]
Steinmetz, Nicole F.
[2
,4
,5
,6
]
Kikkawa, James M.
[7
]
LaSpina, Catherine
[1
]
Hegmann, Torsten
[1
,8
]
机构:
[1] Kent State Univ, Dept Chem & Biochem, Kent, OH 44242 USA
[2] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA
[3] Kent State Univ, Dept Biol Sci, Kent, OH 44242 USA
[4] Case Western Reserve Univ, Dept Radiol, Cleveland, OH 44106 USA
[5] Case Western Reserve Univ, Dept Mat Sci & Engn, Cleveland, OH 44106 USA
[6] Case Western Reserve Univ, Dept Macromol Sci & Engn, Cleveland, OH 44106 USA
[7] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
[8] Kent State Univ, Inst Liquid Crystal, Chem Phys Interdisciplinary Program, Kent, OH 44242 USA
基金:
美国国家科学基金会;
关键词:
FE3O4;
NANOPARTICLES;
MAGNETIC-PROPERTIES;
SHAPE;
TRANSITION;
AGENTS;
D O I:
10.1039/c5tb01138h
中图分类号:
TB3 [工程材料学];
R318.08 [生物材料学];
学科分类号:
0805 ;
080501 ;
080502 ;
摘要:
A low temperature, aqueous synthesis of polyhedral iron oxide nanoparticles (IONPs) is presented. The modification of the co-precipitation hydrolysis method with Triton X surfactants results in the formation of crystalline polyhedral particles. The particles are herein termed iron oxide "nanobricks'' (IONBs) as the variety of particles made are all variations on a simple "brick-like'' rhombohedral shape as evaluated by TEM. These IONBs can be easily coated with hydrophilic silane ligands, allowing them to be dispersed in aqueous media. The dispersed particles are investigated for potential applications as hyperthermia and T-2 MRI contrast agents. The results demonstrate that the IONBs perform better than comparable spherical IONPs in both applications, and show r(2) values amongst the highest for iron oxide based materials reported in the literature.
引用
收藏
页码:6877 / 6884
页数:8
相关论文
共 50 条