GENUS FIELDS OF CYCLIC l-EXTENSIONS OF RATIONAL FUNCTION FIELDS

被引:8
作者
Bautista-Ancona, Victor [1 ]
Rzedowski-Calderon, Martha [2 ]
Villa-Salvador, Gabriel [2 ]
机构
[1] Univ Autonoma Yucatan, Fac Matemat, Merida, Yucatan, Mexico
[2] Ctr Invest Estudios Avanzados IPN, Dept Control Automat, Mexico City 07000, DF, Mexico
关键词
Genus fields; congruence function fields; global fields; Dirichlet characters; cyclotomic function fields; cyclic extensions; Kummer extensions;
D O I
10.1142/S1793042113500243
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a construction of genus fields for Kummer cyclic l-extensions of rational congruence function fields, l a prime number. First we find this genus field for a field contained in a cyclotomic function field using Leopoldt's construction by means of Dirichlet characters and the Hilbert class field defined by Rosen. The general case follows from this. This generalizes the result obtained by Peng for a cyclic extension of degree l.
引用
收藏
页码:1249 / 1262
页数:14
相关论文
共 17 条
  • [1] Anglès B, 2000, MANUSCRIPTA MATH, V101, P513, DOI 10.1007/s002290050229
  • [2] Genus theory for function fields
    Bae, SH
    Koo, JK
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1996, 60 : 301 - 310
  • [3] The generalized Redei-matrix for function fields
    Bae, Sunghan
    Hu, Su
    Jung, Hwanyup
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (04) : 760 - 780
  • [4] THE GENUS FIELD OF AN ALGEBRAIC FUNCTION-FIELD
    CLEMENT, R
    [J]. JOURNAL OF NUMBER THEORY, 1992, 40 (03) : 359 - 375
  • [5] Conner P.E., 1988, SERIES PURE MATH, V8
  • [6] Frohlich A., 1983, Contemporary Mathematics, V24
  • [7] Gauss C. F., 1801, Disquisitiones Arithmeticae
  • [8] The genus fields of Artin-Schreier extensions
    Hu, Su
    Li, Yan
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2010, 16 (04) : 255 - 264
  • [9] Ishida M., 1976, LECT NOTES MATH, V555
  • [10] Leopoldt H. W., 1953, MATH NACHR, V9, P351, DOI DOI 10.1002/MANA.19530090604