The ribonuclease activity of Csm6 is required for anti-plasmid immunity by Type III-A CRISPR-Cas systems

被引:52
|
作者
Foster, Kawanda [1 ]
Kalter, Joshua [2 ]
Woodside, Walter [1 ]
Terns, Rebecca M. [2 ]
Terns, Michael P. [1 ,2 ,3 ]
机构
[1] Univ Georgia, Dept Microbiol, Athens, GA 30602 USA
[2] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA
[3] Univ Georgia, Dept Genet, Athens, GA 30602 USA
基金
美国国家卫生研究院;
关键词
CRISPR; Cas; Csm; Csm6; HEPN; Type III; Cas10; endoribonuclease; interference; immunity; RNA-SILENCING COMPLEX; CMR COMPLEX; CRYSTAL-STRUCTURE; DNA CLEAVAGE; PROTEIN; DEGRADATION; MECHANISM; SUBUNIT; REVEALS; CSX1;
D O I
10.1080/15476286.2018.1493334
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CRISPR-Cas systems provide prokaryotes with RNA-based adaptive immunity against viruses and plasmids. A unique feature of Type III CRISPR-Cas systems is that they selectively target transcriptionally-active invader DNA, and can cleave both the expressed RNA transcripts and source DNA. The Type III-A effector crRNP (CRISPR RNA-Cas protein complex), which contains Cas proteins Csm1-5, recognizes and degrades invader RNA and DNA in a crRNA-guided, manner. Interestingly, Type III-A systems also employ Csm6, an HEPN family ribonuclease that does not stably associate with the Type III-A effector crRNP, but nevertheless contributes to defense via mechanistic details that are still being determined. Here, we investigated the mechanism of action of Csm6 in Type III-A CRISPR-Cas systems from Lactococcus lactis, Staphylococcus epidermidis, and Streptococcus thermophilus expressed in Escherichia coli. We found that L. lactis and S. epidermidis Csm6 cleave RNA specifically after purines in vitro, similar to the activity reported for S. thermophilus Csm6. Moreover, L. lactis Csm6 functions as a divalent metal-independent, single strand-specific endoribonuclease that depends on the conserved HEPN domain. In vivo, we show that deletion of csm6 or expression of an RNase-defective form of Csm6 disrupts crRNA-dependent loss of plasmid DNA in all three systems expressed in E. coli. Mutations in the Csm1 palm domain, which are known to deactivate Csm6 ribonuclease activity, also prevent plasmid loss in the three systems. The results indicate that Csm6 ribonuclease activity rather than Csm1-mediated DNase activity effects anti-plasmid immunity by the three Type III-A systems investigated.
引用
收藏
页码:449 / 460
页数:12
相关论文
共 50 条
  • [21] Type III-A CRISPR-associated protein Csm6 degrades cyclic hexa-adenylate activator using both CARF and HEPN domains
    Smalakyte, Dalia
    Kazlauskiene, Migle
    Havelund, Jesper F.
    Ruksenaite, Audrone
    Rimaite, Auguste
    Tamulaitiene, Giedre
    Faergeman, Nils J.
    Tamulaitis, Gintautas
    Siksnys, Virginijus
    NUCLEIC ACIDS RESEARCH, 2020, 48 (16) : 9204 - 9217
  • [22] Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers
    Niewoehner, Ole
    Garcia-Doval, Carmela
    Rostol, Jakob T.
    Berk, Christian
    Schwede, Frank
    Bigler, Laurent
    Hall, Jonathan
    Marraffini, Luciano A.
    Jinek, Martin
    NATURE, 2017, 548 (7669) : 543 - +
  • [23] The structural biology of type III CRISPR-Cas systems
    Li, Xuzichao
    Han, Jie
    Yang, Jie
    Zhang, Heng
    JOURNAL OF STRUCTURAL BIOLOGY, 2024, 216 (01)
  • [24] SCOPE enables type III CRISPR-Cas diagnostics using flexible targeting and stringent CARF ribonuclease activation
    Steens, Jurre A.
    Zhu, Yifan
    Taylor, David W.
    Bravo, Jack P. K.
    Prinsen, Stijn H. P.
    Schoen, Cor D.
    Keijser, Bart J. F.
    Ossendrijver, Michel
    Hofstra, L. Marije
    Brouns, Stan J. J.
    Shinkai, Akeo
    van der Oost, John
    Staals, Raymond H. J.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [25] Critical roles for 'housekeeping' nucleases in type III CRISPR-Cas immunity
    Chou-Zheng, Lucy
    Hatoum-Aslan, Asma
    ELIFE, 2022, 11
  • [26] Programmable RNA Shredding by the Type III-A CRISPR-Cas System of Streptococcus thermophilus
    Tamulaitis, Gintautas
    Kazlauskiene, Migle
    Manakova, Elena
    Venclovas, Ceslovas
    Nwokeoji, Alison O.
    Dickman, Mark J.
    Horvath, Philippe
    Siksnys, Virginijus
    MOLECULAR CELL, 2014, 56 (04) : 506 - 517
  • [27] The Cyclic Oligoadenylate Signaling Pathway of Type III CRISPR-Cas Systems
    Huang, Fengtao
    Zhu, Bin
    FRONTIERS IN MICROBIOLOGY, 2021, 11
  • [28] RNA activation-independent DNA targeting of the Type III CRISPR-Cas system by a Csm complex
    Park, Kwang-Hyun
    An, Yan
    Jung, Tae-Yang
    Baek, In-Young
    Noh, Haemin
    Ahn, Woo-Chan
    Hebert, Hans
    Song, Ji-Joon
    Kim, Jeong-Hoon
    Oh, Byung-Ha
    Woo, Eui-Jeon
    EMBO REPORTS, 2017, 18 (05) : 826 - 840
  • [29] Lactococcus lactis type III-A CRISPR-Cas system cleaves bacteriophage RNA
    Millen, Anne M.
    Samson, Julie E.
    Tremblay, Denise M.
    Magadan, Alfonso H.
    Rousseau, Genevieve M.
    Moineau, Sylvain
    Romero, Dennis A.
    RNA BIOLOGY, 2019, 16 (04) : 461 - 468
  • [30] The structure of a Type III-A CRISPR-Cas effector complex reveals conserved and idiosyncratic contacts to target RNA and crRNA among Type III-A systems
    Paraan, Mohammadreza
    Nasef, Mohamed
    Chou-Zheng, Lucy
    Khweis, Sarah A. A.
    Schoeffler, Allyn J. J.
    Hatoum-Aslan, Asma
    Stagg, Scott M. M.
    Dunkle, Jack A. A.
    PLOS ONE, 2023, 18 (06):