Potential theory in the class of m-subharmonic functions

被引:60
作者
Sadullaev, A. [1 ]
Abdullaev, B. [1 ]
机构
[1] Natl Univ Uzbekistan, Tashkent 100174, Uzbekistan
关键词
DIRICHLET PROBLEM; EQUATIONS;
D O I
10.1134/S0081543812080111
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A potential theory for the equation (dd (c) u)m a beta (n-m) = f beta (n) , 1 a parts per thousand currency sign m a parts per thousand currency sign n, is developed. The corresponding notions of m-capacity and m-subharmonic functions are introduced, and their properties are studied. DOI: 10.1134/S0081543812080111
引用
收藏
页码:155 / 180
页数:26
相关论文
共 28 条
[1]   DIRICHLET PROBLEM FOR A COMPLEX MONGE-AMPERE EQUATION [J].
BEDFORD, E ;
TAYLOR, BA .
INVENTIONES MATHEMATICAE, 1976, 37 (01) :1-44
[2]   A NEW CAPACITY FOR PLURISUBHARMONIC-FUNCTIONS [J].
BEDFORD, E ;
TAYLOR, BA .
ACTA MATHEMATICA, 1982, 149 (1-2) :1-40
[3]   The domain of definition of the complex Monge-Ampere operator [J].
Blocki, Z .
AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (02) :519-530
[4]   Weak solutions to the complex Hessian equation [J].
Blocki, Z .
ANNALES DE L INSTITUT FOURIER, 2005, 55 (05) :1735-+
[5]  
BRELOT M, 1959, ELEMENTS THEORIE CLA
[6]  
Brelot M., 1964, ELEMENTS THEORIE CLA
[7]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .3. FUNCTIONS OF THE EIGENVALUES OF THE HESSIAN [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
ACTA MATHEMATICA, 1985, 155 (3-4) :261-301
[8]  
Chern S.-S., 1969, INTRINSIC NORMS COMP, P119
[9]  
Chirka E., 1989, Complex Analytic Sets, V46
[10]  
Chirka E. M., 1985, Complex Analytic Sets