Correcting a paper on the Randic and geometric-arithmetic indices

被引:13
|
作者
Mansour, Toufik [1 ]
Rostami, Mohammad Ali [2 ]
Elumalai, Suresh [3 ]
Xavier, Britto Antony [4 ]
机构
[1] Univ Haifa, Dept Math, Haifa, Israel
[2] Univ Jena, Inst Comp Sci, Jena, Germany
[3] Velammal Engn Coll, Dept Math, Chennai, Tamil Nadu, India
[4] Sacred Heart Coll, Dept Math, Tirupattur, Tamil Nadu, India
关键词
Randic index; geometric-arithmetic index; Zagreb index;
D O I
10.3906/mat-1510-115
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Randic index (R) and the geometric arithmetic index (GA) are found to be useful tools in QSPR and QSAR studies. In the Journal of Inequalities and Applications 180, 1-7, Lokesha, Shwetha Shetty, Ranjini, Cangul, and Cevik gave "New bounds for Randic and GA indices." In the paper, we first point out that Theorems 1, 2, and 4 are incorrect and in this short note we present the correct inequalities for Randic and GA indices. In the same paper, we provide the equality cases for Theorems 3, 5, and 6.
引用
收藏
页码:27 / 32
页数:6
相关论文
共 50 条
  • [1] ON ARITHMETIC-GEOMETRIC AND GEOMETRIC-ARITHMETIC INDICES OF GRAPHS
    Ali, Akbar
    Matejic, Marjan M.
    Milovanovic, Igor Z.
    Milovanovic, Emina I.
    Stankov, Stefan D.
    Raza, Zahid
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (04): : 1565 - 1579
  • [2] Study on geometric-arithmetic, arithmetic-geometric and Randić indices of graphs
    Das, Kinkar Chandra
    Huh, Da-yeon
    Bera, Jayanta
    Mondal, Sourav
    DISCRETE APPLIED MATHEMATICS, 2025, 360 : 229 - 245
  • [3] ESTIMATING THE SECOND AND THIRD GEOMETRIC-ARITHMETIC INDICES
    Gutman, Ivan
    Furtula, Boris
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2011, 40 (01): : 69 - 76
  • [4] Unicyclic Graphs With Maximum Geometric-Arithmetic Indices
    Husin, Nor Hafizah Md
    Du, Zhibin
    Hasni, Roslan
    ARS COMBINATORIA, 2020, 148 : 89 - 107
  • [5] THE SECOND AND THIRD GEOMETRIC-ARITHMETIC INDICES OF UNICYCLIC GRAPHS
    Liu, Ping
    Liu, Bolian
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2011, 40 (04): : 555 - 562
  • [6] The minimal chemical tree for the difference between geometric-arithmetic and Randić indices
    Mondal, Sourav
    Das, Kinkar Chandra
    Huh, Da-yeon
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2024, 124 (01)
  • [7] On geometric-arithmetic index
    Yuan, Yan
    Zhou, Bo
    Trinajstic, Nenad
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 47 (02) : 833 - 841
  • [8] Relation between second and third geometric-arithmetic indices of trees
    Furtula, Boris
    Gutman, Ivan
    JOURNAL OF CHEMOMETRICS, 2011, 25 (02) : 87 - 91
  • [9] On geometric-arithmetic index
    Yan Yuan
    Bo Zhou
    Nenad Trinajstić
    Journal of Mathematical Chemistry, 2010, 47 : 833 - 841
  • [10] Spectral properties of geometric-arithmetic index
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 277 : 142 - 153