Synchronization Thresholds in an Ensemble of Kuramoto Phase Oscillators with Randomly Blinking Couplings

被引:8
作者
Barabash, N. V. [1 ]
Belykh, V. N. [1 ]
机构
[1] Volga State Univ Water Transport, Nizhnii Novgorod, Russia
基金
俄罗斯基础研究基金会; 俄罗斯科学基金会;
关键词
DYNAMICS; MODEL; NETWORKS;
D O I
10.1007/s11141-018-9844-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider a network of Kuramoto phase oscillators with randomly blinking couplings. Applicability of the averaging method for small switching intervals is rigorously substantiated. Using this method, we analytically estimate the threshold coupling force for synchronizing the ensemble oscillators. The threshold synchronization is studied as a function of the switching interval for various network sizes. The effect of preserving synchronization for a significant increase in the switching interval is found, which is the key feature of the system since a slight increase in this interval usually leads to the synchronization failure. The intermittent-synchronization possibility for small network sizes and large switching intervals is shown. An increase in the network size is shown to result in a stability increase due to the decreasing probability of appearance of uncoupled configurations. The regions corresponding to the global synchronization of oscillators are singled out in the system-parameter space.
引用
收藏
页码:761 / 768
页数:8
相关论文
共 21 条
[1]  
[Anonymous], 2002, Random Perturbation Methods with Applications in Science and Engineering
[2]   Multistable randomly switching oscillators: The odds of meeting a ghost [J].
Belykh, I. ;
Belykh, V. ;
Jeter, R. ;
Hasler, M. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (10) :2497-2507
[3]   Blinking model and synchronization in small-world networks with a time-varying coupling [J].
Belykh, IV ;
Belykh, VN ;
Hasler, M .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 195 (1-2) :188-206
[4]   Dynamics of the finite-dimensional Kuramoto model: Global and cluster synchronization [J].
Belykh, Vladimir N. ;
Petrov, Valentin S. ;
Osipov, Grigory V. .
REGULAR & CHAOTIC DYNAMICS, 2015, 20 (01) :37-48
[5]  
Bogolyubov N. N., 1955, Asymptotic Methods in the Theory of Nonlinear Oscillations
[6]  
Brown E, 2003, PERSPECTIVES AND PROBLEMS IN NONLINEAR SCIENCE, P183
[7]  
Dmitriev A. S., 2015, IZV VYSSH UCHEBN ZAV, V23, P21
[8]   Synchronization in complex networks of phase oscillators: A survey [J].
Doerfler, Florian ;
Bullo, Francesco .
AUTOMATICA, 2014, 50 (06) :1539-1564
[9]   Dynamics of Stochastically Blinking Systems. Part II: Asymptotic Properties [J].
Hasler, Martin ;
Belykh, Vladimir ;
Belykh, Igor .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2013, 12 (02) :1031-1084
[10]   Dynamics of Stochastically Blinking Systems. Part I: Finite Time Properties [J].
Hasler, Martin ;
Belykh, Vladimir ;
Belykh, Igor .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2013, 12 (02) :1007-1030