On Redundancy in Simple Temporal Networks

被引:3
作者
Lee, Jae Hee [1 ]
Li, Sanjiang [1 ]
Long, Zhiguo [1 ]
Sioutis, Michael [2 ]
机构
[1] UTS, FEIT, QCIS, Ultimo, NSW, Australia
[2] Univ Artois, CRIL, Arras, France
来源
ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE | 2016年 / 285卷
关键词
GRAPHS;
D O I
10.3233/978-1-61499-672-9-828
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Simple Temporal Problem (STP) has been widely used in various applications to schedule tasks. For dynamical systems, scheduling needs to be efficient and flexible to handle uncertainty and perturbation. To this end, modern approaches usually encode the temporal information as an STP instance. This representation contains redundant information, which can not only take a significant amount of storage space, but also make scheduling inefficient due to the non-concise representation. In this paper, we investigate the problem of simplifying an STP instance by removing redundant information. We show that such a simplification can result in a unique minimal representation without loss of temporal information, and present an efficient algorithm to achieve this task. Evaluation on a large benchmark dataset of STP exhibits a significant reduction in redundant information for the involved instances.
引用
收藏
页码:828 / 836
页数:9
相关论文
共 50 条
  • [1] Computationally efficient measure of topological redundancy of biological and social networks
    Albert, Reka
    DasGupta, Bhaskar
    Hegde, Rashmi
    Sivanathan, Gowri Sangeetha
    Gitter, Anthony
    Guersoy, Gamze
    Paul, Pradyut
    Sontag, Eduardo
    PHYSICAL REVIEW E, 2011, 84 (03)
  • [2] On packing arborescences in temporal networks
    Kamiyama, Naoyuki
    Kawase, Yasushi
    INFORMATION PROCESSING LETTERS, 2015, 115 (02) : 321 - 325
  • [3] Thermodynamic Characterization of Temporal Networks
    Minello, Giorgia
    Torsello, Andrea
    Hancock, Edwin R.
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2016, 2016, 10029 : 49 - 59
  • [4] A STRUCTURAL APPROACH TO THE TEMPORAL MODELING OF NETWORKS
    Beichl, Isabel
    Cloteaux, Brian
    PROCEEDINGS OF THE 2009 WINTER SIMULATION CONFERENCE (WSC 2009 ), VOL 1-4, 2009, : 780 - 788
  • [5] Inferring Tie Strength in Temporal Networks
    Oettershagen, Lutz
    Konstantinidis, Athanasios L.
    Italiano, Giuseppe F.
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II, 2023, 13714 : 69 - 85
  • [6] Influence maximization on temporal networks: a review
    Yanchenko, Eric
    Murata, Tsuyoshi
    Holme, Petter
    APPLIED NETWORK SCIENCE, 2024, 9 (01)
  • [7] Inferring tie strength in temporal networks
    Oettershagen, Lutz
    Konstantinidis, Athanasios L.
    Italiano, Giuseppe F.
    DATA MINING AND KNOWLEDGE DISCOVERY, 2025, 39 (02)
  • [8] Human Interactive Patterns in Temporal Networks
    Zhang, Yi-Qing
    Li, Xiang
    Xu, Jian
    Vasilakos, Athanasios V.
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2015, 45 (02): : 214 - 222
  • [9] Evolutionary dynamics on sequential temporal networks
    Sheng, Anzhi
    Li, Aming
    Wang, Long
    PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (08)
  • [10] On Verifying and Maintaining Connectivity of Interval Temporal Networks
    Akrida, Eleni C.
    Spirakis, Paul G.
    PARALLEL PROCESSING LETTERS, 2019, 29 (02)