Networks for the weak topology of Banach and Frechet spaces

被引:15
作者
Gabriyelyan, S. [1 ]
Kakol, J. [2 ,3 ]
Kubis, W. [3 ,4 ]
Marciszewski, W. [5 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
[2] Adam Mickiewicz Univ, Fac Math & Informat, PL-61614 Poznan, Poland
[3] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
[4] Jan Kochanowski Univ, Inst Math, PL-25406 Kielce, Poland
[5] Univ Warsaw, Inst Math, PL-02097 Warsaw, Poland
基金
以色列科学基金会;
关键词
Frechet space; Weakly N locally convex space; N-space; N-0-space; Space of continuous functions;
D O I
10.1016/j.jmaa.2015.07.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We start the systematic study of Frechet spaces which are N-spaces in the weak topology. A topological space X is an N-0-space or an N-space if X has a countable k-network or a sigma-locally finite k-network, respectively. We are motivated by the following result of Corson (1966): If the space C-c(X) of continuous real-valued functions on a Tychonoff space X endowed with the compact-open topology is a Banach space, then C-c(X) endowed with the weak topology is an N-0-space if and only if X is countable. We extend Corson's result as follows: If the space E := C-c(X) is a Frechet les, then E endowed with its weak topology sigma(E, E') is an N-space if and only if (E, sigma(E, E')) is an N-0-space if and only if X is countable. We obtain a necessary and some sufficient conditions on a Frechet lcs to be an N-space in the weak topology. We prove that a reflexive Frechet lcs E in the weak topology sigma(E, E') is an N-space if and only if (E, sigma(E, E')) is an N-0-space if and only if E is separable. We show however that the nonseparable Banach space l(1)(R) with the weak topology is an N-space. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1183 / 1199
页数:17
相关论文
共 28 条
  • [11] Engelking R., 1989, General topology
  • [12] Fabian M., 2001, Functional Analysis and Infinite-Dimensional Geometry
  • [13] FOGED L, 1986, TOPOL APPL, V22, P223, DOI 10.1016/0166-8641(86)90022-2
  • [14] Gabriyelyan S., 2015, TOPOLOGY APPL
  • [15] Gruenhage G., 1984, HDB SET THEORETIC TO, P423, DOI 10.1016/B978-0-444-86580-9.50013-6
  • [16] Guthrie J.A., 1971, Gen. Topol. Appl., V1, P105
  • [17] Jarchow H., 1981, Locally convex spaces
  • [18] Kakol J, 2011, DEV MATH, V24, P1, DOI 10.1007/978-1-4614-0529-0_1
  • [19] On Banach spaces whose norm-open sets are Fσ-sets in the weak topology
    Marciszewski, Witold
    Pol, Roman
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 350 (02) : 708 - 722
  • [20] MICHAEL E, 1966, J MATH MECH, V15, P983