Networks for the weak topology of Banach and Frechet spaces

被引:15
作者
Gabriyelyan, S. [1 ]
Kakol, J. [2 ,3 ]
Kubis, W. [3 ,4 ]
Marciszewski, W. [5 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
[2] Adam Mickiewicz Univ, Fac Math & Informat, PL-61614 Poznan, Poland
[3] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
[4] Jan Kochanowski Univ, Inst Math, PL-25406 Kielce, Poland
[5] Univ Warsaw, Inst Math, PL-02097 Warsaw, Poland
基金
以色列科学基金会;
关键词
Frechet space; Weakly N locally convex space; N-space; N-0-space; Space of continuous functions;
D O I
10.1016/j.jmaa.2015.07.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We start the systematic study of Frechet spaces which are N-spaces in the weak topology. A topological space X is an N-0-space or an N-space if X has a countable k-network or a sigma-locally finite k-network, respectively. We are motivated by the following result of Corson (1966): If the space C-c(X) of continuous real-valued functions on a Tychonoff space X endowed with the compact-open topology is a Banach space, then C-c(X) endowed with the weak topology is an N-0-space if and only if X is countable. We extend Corson's result as follows: If the space E := C-c(X) is a Frechet les, then E endowed with its weak topology sigma(E, E') is an N-space if and only if (E, sigma(E, E')) is an N-0-space if and only if X is countable. We obtain a necessary and some sufficient conditions on a Frechet lcs to be an N-space in the weak topology. We prove that a reflexive Frechet lcs E in the weak topology sigma(E, E') is an N-space if and only if (E, sigma(E, E')) is an N-0-space if and only if E is separable. We show however that the nonseparable Banach space l(1)(R) with the weak topology is an N-space. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1183 / 1199
页数:17
相关论文
共 28 条
  • [1] [Anonymous], 2008, J. Math. Sci.
  • [2] [Anonymous], 1987, Quest. Answ. Gen. Topol
  • [3] [Anonymous], 2003, Rev. R. Acad. Cienc. Exactas F i s. Nat.
  • [4] A TOPOLOGY FOR SPACES OF TRANSFORMATIONS
    ARENS, RF
    [J]. ANNALS OF MATHEMATICS, 1946, 47 (03) : 480 - 495
  • [5] Banakh T., 2004, APPL GEN TOPOL, V5, P25, DOI DOI 10.4995/AGT.2004.1993
  • [6] Bierstedt K.D., 1989, REV MAT COMPLUT, V2, P59, DOI DOI 10.5209/REV_REMA.1989.V2.18067
  • [7] Cascales B., 2014, RECENT PROGR GEN TOP, VIII, P93
  • [8] Corson H.H., 1961, T AM MATH SOC, V101, P207
  • [9] VARIETIES OF LINEAR TOPOLOGICAL-SPACES
    DIESTEL, J
    MORRIS, SA
    SAXON, SA
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 172 (NOCT) : 207 - 230
  • [10] TOPOLOGICAL PROPERTIES OF BANACH-SPACES
    EDGAR, GA
    WHEELER, RF
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1984, 115 (02) : 317 - 350