A Selective Analysis of Microarray Data using Association Rule Mining

被引:17
作者
Alagukumar, S. [1 ]
Lawrance, R. [2 ]
机构
[1] Ayya Nadar Janaki Ammal Coll, Comp Sci, Sivakasi 626124, Tamil Nadu, India
[2] Ayya Nadar Janaki Ammal Coll, Dept Comp Applicat, Sivakasi 626124, Tamil Nadu, India
来源
GRAPH ALGORITHMS, HIGH PERFORMANCE IMPLEMENTATIONS AND ITS APPLICATIONS (ICGHIA 2014) | 2015年 / 47卷
关键词
Data mining; Microarray gene expression data; frequent pattern mining; gene association rules; gene expression analysis;
D O I
10.1016/j.procs.2015.03.177
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Association analysis plays the vital role in the computational biology. DNA Microarrays allow for the simultaneously monitor of expression levels for thousands of genes or entire genomes. Microarray gene association analysis is exposing the biological relevant association between different genes under different experimental samples. Mining association rules has been applied successfully in various types of data for determining interesting association pattern. Frequent pattern mining is becoming a potential approach in microarray gene expression analysis. In this paper the most relevant mining association rules as well as main issues when discovering efficient and practical method for microarray gene association analysis have been reviewed. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:3 / 12
页数:10
相关论文
共 10 条
[1]  
Agrawal R., 1993, SIGMOD Record, V22, P207, DOI 10.1145/170036.170072
[2]  
Agrawal R., 1994, P 20 INT C VER LARG, P475
[3]   Gene association analysis: a survey of frequent pattern mining from gene expression data [J].
Alves, Ronnie ;
Rodriguez-Baena, Domingo S. ;
Aguilar-Ruiz, Jesus S. .
BRIEFINGS IN BIOINFORMATICS, 2010, 11 (02) :210-224
[4]  
[Anonymous], J COMPUTING
[5]  
Antonie L, 2011, P 2011 ACM S APPL CO, P94
[6]  
Han J, 2012, MOR KAUF D, P1
[7]  
Jiawei Han, 2000, SIGMOD Record, V29, P1, DOI 10.1145/335191.335372
[8]  
Tuimala J., 2005, DNA MICROARRAY DATA
[9]  
Wang J., 2003, P 9 ACM SIGKDD INT C
[10]   MCR-Miner: Maximal Confident Association Rules Miner Algorithm for Up/Down-Expressed Genes [J].
Zakaria, Wael ;
Kotb, Yasser ;
Ghaleb, Fayed .
APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (02) :799-809