The existence of Type II singularities for the Ricci flow on Sn+1

被引:30
作者
Gu, Hui-Ling [1 ]
Zhu, Xi-Ping [1 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
关键词
D O I
10.4310/CAG.2008.v16.n3.a1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the existence of Type II singularities for the Ricci flow on Sn+1 for all n >= 2. This also gives an affirmative answer to the degenerate neckpinch conjecture of Hamilton.
引用
收藏
页码:467 / 494
页数:28
相关论文
共 32 条
[1]   Mean curvature flow through singularities for surfaces of rotation [J].
Altschuler, S ;
Angenent, SB ;
Giga, Y .
JOURNAL OF GEOMETRIC ANALYSIS, 1995, 5 (03) :293-358
[2]  
Angenent S, 2004, MATH RES LETT, V11, P493
[3]   THE ZERO-SET OF A SOLUTION OF A PARABOLIC EQUATION [J].
ANGENENT, S .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1988, 390 :79-96
[4]  
ANGENENT S, 2005, ARXIVMATHDG0511247V1
[5]  
ANGENENT S, 1989, P C ELL PAR EQ GREYN
[6]  
Angenent SB, 1997, J REINE ANGEW MATH, V482, P15
[7]  
[Anonymous], 2004, MATH SURVEYS MONOGRA
[8]  
BOHM C, 2006, ARXIVMATHDG0606187
[9]  
Bryant R, LOCAL EXISTENC UNPUB
[10]  
Cao HD, 2006, ASIAN J MATH, V10, P165