A Literature Review of CO2, Natural Gas, and Water-Based Fluids for Enhanced Oil Recovery in Unconventional Reservoirs

被引:210
作者
Burrows, Lauren C. [1 ,3 ]
Haeri, Foad [1 ,4 ]
Cvetic, Patricia [1 ,4 ]
Sanguinito, Sean [1 ,4 ]
Shi, Fan [1 ,4 ]
Tapriyal, Deepak [1 ,4 ]
Goodman, Angela [1 ]
Enick, Robert M. [2 ]
机构
[1] United States Dept Energy, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA
[2] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA
[3] Oak Ridge Inst Sci & Technol, Oak Ridge, TN 37830 USA
[4] Leidos Res Support Team, Pittsburgh, PA 15236 USA
关键词
HUFF-N-PUFF; BAKKEN TIGHT OIL; HYDRAULIC-FRACTURING FLUIDS; MISCIBILITY PRESSURE MMP; WETTABILITY ALTERATION; SPONTANEOUS IMBIBITION; NUMERICAL-SIMULATION; INTERFACIAL-TENSION; CARBON-DIOXIDE; ASPHALTENE PRECIPITATION;
D O I
10.1021/acs.energyfuels.9b03658
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Primary oil recovery from fractured unconventional formations, such as shale or tight sands, is typically less than 10%. The development of an economically viable enhanced oil recovery (EOR) technique applicable to unconventional liquid reservoirs (ULRs) would lead to tremendous increases in domestic oil production. Although injection techniques such as waterflooding and CO2EOR have proven profitable in conventional formations for decades, EOR in ULRs presents a far more difficult challenge. The extremely low permeability and mixed wettability of unconventional formations are the foremost obstacles to success. Because of the challenges associated with water-based EOR techniques (a.k.a., chemical EOR) in shale, several nonaqueous injection fluids have been considered, including CO2, natural gas, and (to a lesser degree) nitrogen. All these fluids have significantly lower viscosities than water, allowing them to more easily penetrate shale nanopores. Unlike water, they also each possess some degree of miscibility with oil, which enables the gas to extract oil through a combination of mechanisms. Based on laboratory-scale experimentation, CO2 and rich natural gas (methane-rich natural gas containing high concentrations of ethane, propane, and butane) are the most promising EOR fluids. The interpretation of results from field tests in the Bakken and Eagle Ford formations have been complicated by interference of frac-hits or well-bashing caused by hydraulic fracturing at nearby wells. In this review we cover mechanisms, laboratory experiments, numerical simulations, and field tests involving high-pressure CO2, natural gas, ethane, nitrogen, and water.
引用
收藏
页码:5331 / 5380
页数:50
相关论文
共 383 条
  • [81] [Anonymous], SPE ANN TECHN C EXH
  • [82] [Anonymous], SPE UNC RES C
  • [83] [Anonymous], SPE IMPR OIL REC S
  • [84] [Anonymous], SPE UNC RES C
  • [85] [Anonymous], SPE AS PAC OIL GAS C
  • [86] [Anonymous], SPE PROD TECHN S
  • [87] [Anonymous], SPE CSUR UNC RES C
  • [88] [Anonymous], SPE IMPR OIL REC C
  • [89] [Anonymous], SPE LAT AM CAR PETR
  • [90] [Anonymous], SPE AAPG SEG UNC RES