Local well-posedness for the periodic higher order KdV type equations

被引:26
作者
Hirayama, Hiroyuki [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2012年 / 19卷 / 06期
关键词
KdV equation; Well-posedness; Cauchy problem; Fourier restriction norm; KORTEWEG-DEVRIES EQUATION; DE-VRIES EQUATION; CAUCHY-PROBLEM; KAWAHARA EQUATION; GLOBAL EXISTENCE; SOBOLEV SPACES;
D O I
10.1007/s00030-011-0147-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Higher order KdV type equations are the equation replaced by a higher order derivative for the KdV equation. Recently, the local well-posedness result for these equations on torus have been given by Gorsky and Himonas (Math. Comput. Simul. 80:173-183, 2009). We extend this result by improving a bilinear estimate used in the Fourier restriction norm method.
引用
收藏
页码:677 / 693
页数:17
相关论文
共 26 条
  • [1] INITIAL-VALUE PROBLEM FOR KORTEWEG-DEVRIES EQUATION
    BONA, JL
    SMITH, R
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1287): : 555 - 601
  • [2] Bourgain J., 1993, Geom. Funct. Anal., V3, P107
  • [3] Bourgain J., 1993, The KdV equations, GAGA, V3, P209, DOI 10.1007/BF01895688
  • [4] Low regularity solutions of two fifth-order KDV type equations
    Chen, Wengu
    Li, Junfeng
    Miao, Changxing
    Wu, Jiahong
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2009, 107 : 221 - 238
  • [5] Christ M, 2003, AM J MATH, V125, P1235
  • [6] Sharp global well-posedness for KDV and modified KDV on R and T
    Colliander, J
    Keel, M
    Staffilani, G
    Takaoka, H
    Tao, T
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (03) : 705 - 749
  • [7] Global existence of solutions for the Cauchy problem of the Kawahara equation with L2 initial data
    Cui, Shang Bin
    Deng, Dong Gao
    Tao, Shuang Ping
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (05) : 1457 - 1466
  • [8] UNIQUENESS OF SOLUTIONS FOR THE GENERALIZED KORTEWEG-DEVRIES EQUATION
    GINIBRE, J
    TSUTSUMI, Y
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (06) : 1388 - 1425
  • [9] On the Cauchy problem for the Zakharov system
    Ginibre, J
    Tsutsumi, Y
    Velo, G
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 151 (02) : 384 - 436
  • [10] Well-posedness of KdV with higher dispersion
    Gorsky, Jennifer
    Himonas, A. Alexandrou
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 80 (01) : 173 - 183