Dual Adversarial Federated Learning on Non-IID Data

被引:0
|
作者
Zhang, Tao [1 ]
Yang, Shaojing [1 ]
Song, Anxiao [1 ]
Li, Guangxia [1 ]
Dong, Xuewen [1 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Peoples R China
来源
KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2022, PT III | 2022年 / 13370卷
基金
国家重点研发计划;
关键词
Federated learning; Non-IID data; Latent feature map; Dual adversarial training; Kullback Leibler divergence;
D O I
10.1007/978-3-031-10989-8_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated Learning (FL) enables multiple distributed local clients to coordinate with a central server to train a global model without sharing their private data. However, the data owned by different clients, even with the same label, may induce conflicts in the latent feature maps, especially under the non-IID FL scenarios. This would fatally impair the performance of the global model. To this end, we propose a novel approach, DAFL, for Dual Adversarial Federated Learning, to mitigate the divergence on latent feature maps among different clients on non-IID data. In particular, a local dual adversarial training is designed to identify the origins of latent feature maps, and then transforms the conflicting latent feature maps to reach a consensus between global and local models in each client. Besides, the latent feature maps of the two models become closer to each other adaptively by reducing their Kullback Leibler divergence. Extensive experiments on benchmark datasets validate the effectiveness of DAFL and also demonstrate that DAFL outperforms the state-of-the-art approaches in terms of test accuracy under different non-IID settings.
引用
收藏
页码:233 / 246
页数:14
相关论文
共 50 条
  • [1] Federated learning on non-IID data: A survey
    Zhu, Hangyu
    Xu, Jinjin
    Liu, Shiqing
    Jin, Yaochu
    NEUROCOMPUTING, 2021, 465 : 371 - 390
  • [2] Fast converging Federated Learning with Non-IID Data
    Naas, Si -Ahmed
    Sigg, Stephan
    2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,
  • [3] Federated Learning With Non-IID Data in Wireless Networks
    Zhao, Zhongyuan
    Feng, Chenyuan
    Hong, Wei
    Jiang, Jiamo
    Jia, Chao
    Quek, Tony Q. S.
    Peng, Mugen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (03) : 1927 - 1942
  • [4] Dynamic Clustering Federated Learning for Non-IID Data
    Chen, Ming
    Wu, Jinze
    Yin, Yu
    Huang, Zhenya
    Liu, Qi
    Chen, Enhong
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT III, 2022, 13606 : 119 - 131
  • [5] Federated Learning With Taskonomy for Non-IID Data
    Jamali-Rad, Hadi
    Abdizadeh, Mohammad
    Singh, Anuj
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) : 8719 - 8730
  • [6] Adaptive Federated Learning With Non-IID Data
    Zeng, Yan
    Mu, Yuankai
    Yuan, Junfeng
    Teng, Siyuan
    Zhang, Jilin
    Wan, Jian
    Ren, Yongjian
    Zhang, Yunquan
    COMPUTER JOURNAL, 2023, 66 (11) : 2758 - 2772
  • [7] Ensemble Federated Learning With Non-IID Data in Wireless Networks
    Zhao, Zhongyuan
    Wang, Jingyi
    Hong, Wei
    Quek, Tony Q. S.
    Ding, Zhiguo
    Peng, Mugen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (04) : 3557 - 3571
  • [8] Advanced Optimization Techniques for Federated Learning on Non-IID Data
    Efthymiadis, Filippos
    Karras, Aristeidis
    Karras, Christos
    Sioutas, Spyros
    FUTURE INTERNET, 2024, 16 (10)
  • [9] FedKT: Federated learning with knowledge transfer for non-IID data
    Mao, Wenjie
    Yu, Bin
    Zhang, Chen
    Qin, A. K.
    Xie, Yu
    PATTERN RECOGNITION, 2025, 159
  • [10] FedProc: Prototypical contrastive federated learning on non-IID data
    Mu, Xutong
    Shen, Yulong
    Cheng, Ke
    Geng, Xueli
    Fu, Jiaxuan
    Zhang, Tao
    Zhang, Zhiwei
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 143 : 93 - 104