LOCAL DATA OF RATIONAL ELLIPTIC CURVES WITH NONTRIVIAL TORSION

被引:1
作者
Barrios, Alexander J. [1 ]
Roy, Manami [2 ]
机构
[1] Univ St Thomas, Dept Math, St Paul, MN 55105 USA
[2] Fordham Univ, Dept Math, Bronx, NY 10458 USA
关键词
elliptic curves; Tamagawa numbers; Kodaira-Neron-types; Tate's algorithm;
D O I
10.2140/pjm.2022.318.1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By Mazur's torsion theorem, there are fourteen possibilities for the nontrivial torsion subgroup T of a rational elliptic curve. For each T, such that E may have additive reduction at a prime p, we consider a parametrized family ET of elliptic curves with the property that they parametrize all elliptic curves E/Q which contain T in their torsion subgroup. Using these parametrized families, we explicitly classify the Kodaira-Neron-type, the conductor exponent and the local Tamagawa number at each prime p where E/Q has additive reduction. As a consequence, we find all rational elliptic curves with a 2- or 3-torsion point that have global Tamagawa number 1. 1. Introduction 1 2. Preliminaries 4 3. Local data of E-T 9 4. Consequences of main results 35 5. Global Tamagawa numbers 36 Acknowledgments 41 References 41
引用
收藏
页码:1 / 42
页数:42
相关论文
共 17 条
[1]  
[Anonymous], 1972, Modular Functions of One Variable, IV
[2]  
[Anonymous], 1977, Publications Mathematiques de l'Institut des Hautes Scientifiques
[3]  
Barrios A. J., 2021, LOCAL DATA COMPUTATI
[4]   Minimal models of rational elliptic curves with non-trivial torsion [J].
Barrios, Alexander J. .
RESEARCH IN NUMBER THEORY, 2022, 8 (01)
[5]  
BIRCH BJ, 1965, J REINE ANGEW MATH, V218, P79
[6]   A remark on Tate's algorithm and Kodaira types [J].
Dokchitser, Tim ;
Dokchitser, Vladimir .
ACTA ARITHMETICA, 2013, 160 (01) :95-100
[7]  
Erdos P., 1953, J. Lond. Math. Soc., V28, P416
[8]  
Hindry M., 2000, Graduate Texts in Mathematics, V201
[9]  
KUBERT DS, 1976, P LOND MATH SOC, V33, P193
[10]   TORSION AND TAMAGAWA NUMBERS [J].
Lorenzini, Dino .
ANNALES DE L INSTITUT FOURIER, 2011, 61 (05) :1995-2037