Surreal numbers with derivation, Hardy fields and transseries: a survey

被引:1
|
作者
Mantova, Vincenzo [1 ]
Matusinski, Mickael [2 ]
机构
[1] Univ Leeds, Dept Math, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Bordeaux, IMB Inst Math Bordeaux, UMR 5251, 351 Cours Liberat, F-33405 Talence, France
来源
ORDERED ALGEBRAIC STRUCTURES AND RELATED TOPICS | 2017年 / 697卷
关键词
DIFFERENTIAL-EQUATIONS;
D O I
10.1090/conm/697/14057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present survey article has two aims: - To provide an intuitive and accessible introduction to the theory of the field of surreal numbers with exponential and logarithmic functions. - To give an overview of some of the recent achievments. In particular, the field of surreal numbers carries a derivation which turns it into a universal domain for Hardy fields.
引用
收藏
页码:265 / 290
页数:26
相关论文
共 50 条
  • [21] The Exponential-Logarithmic Equivalence Classes of Surreal Numbers
    Kuhlmann, Salma
    Matusinski, Mickael
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2015, 32 (01): : 53 - 68
  • [22] HARDY FIELDS
    ROSENLICHT, M
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1983, 93 (02) : 297 - 311
  • [23] HARDY-FIELDS
    SJODIN, G
    ARKIV FOR MATEMATIK, 1971, 8 (03): : 217 - &
  • [24] TRANSSERIAL HARDY FIELDS
    van der Hoeven, Joris
    ASTERISQUE, 2009, (323) : 453 - 487
  • [25] Derivation of the inverse Schulze-Hardy rule
    Trefalt, Gregor
    PHYSICAL REVIEW E, 2016, 93 (03)
  • [26] The Range of Hardy Numbers for Comb Domains
    Karafyllia, Christina
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2022, 22 (04) : 743 - 753
  • [27] The Range of Hardy Numbers for Comb Domains
    Christina Karafyllia
    Computational Methods and Function Theory, 2022, 22 : 743 - 753
  • [28] ON ESTIMATES OF THE APPROXIMATION NUMBERS OF THE HARDY OPERATOR
    Lomakina, E. N.
    EURASIAN MATHEMATICAL JOURNAL, 2015, 6 (02): : 41 - 62
  • [29] Filling gaps in Hardy fields
    Aschenbrenner, Matthias
    van den Dries, Lou
    van der Hoeven, Joris
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (815): : 107 - 172
  • [30] Number systems with simplicity hierarchies: A generalization of Conway's theory of surreal numbers
    Ehrlich, P
    JOURNAL OF SYMBOLIC LOGIC, 2001, 66 (03) : 1231 - 1258