Surreal numbers with derivation, Hardy fields and transseries: a survey

被引:1
|
作者
Mantova, Vincenzo [1 ]
Matusinski, Mickael [2 ]
机构
[1] Univ Leeds, Dept Math, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Bordeaux, IMB Inst Math Bordeaux, UMR 5251, 351 Cours Liberat, F-33405 Talence, France
来源
ORDERED ALGEBRAIC STRUCTURES AND RELATED TOPICS | 2017年 / 697卷
关键词
DIFFERENTIAL-EQUATIONS;
D O I
10.1090/conm/697/14057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present survey article has two aims: - To provide an intuitive and accessible introduction to the theory of the field of surreal numbers with exponential and logarithmic functions. - To give an overview of some of the recent achievments. In particular, the field of surreal numbers carries a derivation which turns it into a universal domain for Hardy fields.
引用
收藏
页码:265 / 290
页数:26
相关论文
共 50 条
  • [1] Surreal numbers, derivations and transseries
    Berarducci, Alessandro
    Mantova, Vincenzo
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (02) : 339 - 390
  • [2] TRANSSERIES AS GERMS OF SURREAL FUNCTIONS
    Berarducci, Alessandro
    Mantova, Vincenzo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (05) : 3549 - 3592
  • [3] Fields of surreal numbers and exponentiation
    van den Dries, L
    Ehrlich, P
    FUNDAMENTA MATHEMATICAE, 2001, 167 (02) : 173 - 188
  • [4] FUNDAMENTALS OF ANALYSIS OVER SURREAL NUMBERS FIELDS
    ALLING, NL
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1989, 19 (03) : 565 - 573
  • [5] Generalizing surreal numbers
    Norton, SP
    Analyzable Functions and Applications, 2005, 373 : 347 - 354
  • [6] Fields of surreal numbers and exponentiation (vol 167, pg 173, 2001)
    van den Dries, L
    Ehrlich, P
    FUNDAMENTA MATHEMATICAE, 2001, 168 (03) : 295 - 297
  • [7] Analysis on Surreal Numbers
    Rubinstein-Salzedo, Simon
    Swaminathan, Ashvin
    JOURNAL OF LOGIC AND ANALYSIS, 2014, 6
  • [8] INTRODUCTION TO SURREAL NUMBERS
    KRUSKAL, MD
    PHYSICA D, 1987, 28 (1-2): : 233 - 233
  • [9] Surreal numbers in Coq
    Mamane, LE
    TYPES FOR PROOFS AND PROGRAMS, 2006, 3839 : 170 - 185
  • [10] CONWAY FIELD OF SURREAL NUMBERS
    ALLING, NL
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 287 (01) : 365 - 386