Implicit-Explicit Methods for a Convection-Diffusion-Reaction Model of the Propagation of Forest Fires

被引:11
作者
Buerger, Raimund [1 ,2 ]
Gavilan, Elvis [3 ]
Inzunza, Daniel [1 ,2 ]
Mulet, Pep [4 ]
Villada, Luis Miguel [5 ,6 ]
机构
[1] Univ Concepcion, Fac Ciencias Fis & Matemat, CI2MA, Casilla 160-C, Concepcion 4030000, Chile
[2] Univ Concepcion, Fac Ciencias Fis & Matemat, Dept Ingn Matemat, Casilla 160-C, Concepcion 4030000, Chile
[3] Univ Concepcion, Fac Ciencias Forestales, Dept Silvicultura, Casilla 160-C, Concepcion 4070374, Chile
[4] Univ Valencia, Dept Matemat, Av Vicent Andres Estelles, E-46100 Burjassot, Spain
[5] Univ Bio Bio, Fac Ciencias, Dept Matemat, GIMNAP, Casilla 5-C, Concepcion 4051381, Chile
[6] Univ Concepcion, CI2MA, Casilla 160-C, Concepcion 4030000, Chile
关键词
forest fire model; numerical solution; firebreak; convection-diffusion-reaction problem; implicit-explicit time integration; weighted essentially non-oscillatory reconstruction; RUNGE-KUTTA METHODS; NUMERICAL-SOLUTION; EQUATIONS; SCHEMES; SYSTEMS;
D O I
10.3390/math8061034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Numerical techniques for approximate solution of a system of reaction-diffusion-convection partial differential equations modeling the evolution of temperature and fuel density in a wildfire are proposed. These schemes combine linearly implicit-explicit Runge-Kutta (IMEX-RK) methods and Strang-type splitting technique to adequately handle the non-linear parabolic term and the stiffness in the reactive part. Weighted essentially non-oscillatory (WENO) reconstructions are applied to the discretization of the nonlinear convection term. Examples are focused on the applicative problem of determining the width of a firebreak to prevent the propagation of forest fires. Results illustrate that the model and numerical scheme provide an effective tool for defining that width and the parameters for control strategies of wildland fires.
引用
收藏
页数:21
相关论文
共 28 条
  • [1] Abgrall R., 2016, HDB NUMERICAL ANAL H
  • [2] [Anonymous], 2018, NUMERICAL METHODS CO
  • [3] On a wildland fire model with radiation
    Asensio, MI
    Ferragut, L
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 54 (01) : 137 - 157
  • [4] Mathematical Modelling of Running Crown Forest Fires
    Barovik, D.
    Taranchuk, V.
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2010, 15 (02) : 161 - 174
  • [5] High Order Semi-implicit Schemes for Time Dependent Partial Differential Equations
    Boscarino, Sebastiano
    Filbet, Francis
    Russo, Giovanni
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (03) : 975 - 1001
  • [6] On linearly implicit IMEX Runge-Kutta methods for degenerate convection-diffusion problems modeling polydisperse sedimentation
    Boscarino, Sebastiano
    Buerger, Raimund
    Mulet, Pep
    Russo, Giovanni
    Miguel Villada, Luis
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2016, 47 (01): : 171 - 185
  • [7] LINEARLY IMPLICIT IMEX RUNGE-KUTTA METHODS FOR A CLASS OF DEGENERATE CONVECTION-DIFFUSION PROBLEMS
    Boscarino, Sebastiano
    Buerger, Raimund
    Mulet, Pep
    Russo, Giovanni
    Villada, Luis M.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02) : B305 - B331
  • [8] HIGH-ORDER ASYMPTOTIC-PRESERVING METHODS FOR FULLY NONLINEAR RELAXATION PROBLEMS
    Boscarino, Sebastiano
    Lefloch, Philippe G.
    Russo, Giovanni
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (02) : A377 - A395
  • [9] NUMERICAL SOLUTION OF A SPATIO-TEMPORAL GENDER-STRUCTURED MODEL FOR HANTAVIRUS INFECTION IN RODENTS
    Buerger, Raimund
    Chowell, Gerardo
    Gavilan, Elvis
    Mulet, Pep
    Villada, Luis M.
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2018, 15 (01) : 95 - 123
  • [10] REGULARIZED NONLINEAR SOLVERS FOR IMEX METHODS APPLIED TO DIFFUSIVELY CORRECTED MULTISPECIES KINEMATIC FLOW MODELS
    Buerger, Raimund
    Mulet, Pep
    Villada, Luis M.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (03) : B751 - B777