Propagation Path Loss Models for 5G Urban Micro- and Macro-Cellular Scenarios

被引:183
作者
Sun, Shu [1 ]
Rappaport, Theodore S. [1 ]
Rangan, Sundeep [1 ]
Thomas, Timothy A. [2 ]
Ghosh, Amitava [2 ]
Kovacs, Istvan Z. [3 ]
Rodriguez, Ignacio [4 ]
Koymen, Ozge [5 ]
Partyka, Andrzej [5 ]
Jarvelainen, Jan [6 ]
机构
[1] NYU, NYU WIRELESS & Tandon Sch Engn, Brooklyn, NY 11201 USA
[2] Nokia, Arlington Hts, IL 60004 USA
[3] Nokia, DK-9220 Aalborg, Denmark
[4] Aalborg Univ, DK-9220 Aalborg, Denmark
[5] Qualcomm R&D, Bridgewater, NJ 08807 USA
[6] Aalto Univ, Sch Elect Engn, FI-00076 Espoo, Finland
来源
2016 IEEE 83RD VEHICULAR TECHNOLOGY CONFERENCE (VTC SPRING) | 2016年
关键词
WAVE; GHZ;
D O I
10.1109/VTCSpring.2016.7504435
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents and compares two candidate large-scale propagation path loss models, the alpha-beta-gamma (ABG) model and the close-in (CI) free space reference distance model, for the design of fifth generation (5G) wireless communication systems in urban micro- and macro-cellular scenarios. Comparisons are made using the data obtained from 20 propagation measurement campaigns or ray-tracing studies from 2 GHz to 73.5 GHz over distances ranging from 5 m to 1429 m. The results show that the one-parameter CI model has a very similar goodness of fit (i.e., the shadow fading standard deviation) in both line-of-sight and non-line-of-sight environments, while offering substantial simplicity and more stable behavior across frequencies and distances, as compared to the three-parameter ABG model. Additionally, the CI model needs only one very subtle and simple modification to the existing 3GPP floating-intercept path loss model (replacing a constant with a close-in free space reference value) in order to provide greater simulation accuracy, more simplicity, better repeatability across experiments, and higher stability across a vast range of frequencies.
引用
收藏
页数:6
相关论文
共 24 条
[1]  
3GPP, 2010, document TR 36
[2]   Millimeter Wave Channel Modeling and Cellular Capacity Evaluation [J].
Akdeniz, Mustafa Riza ;
Liu, Yuanpeng ;
Samimi, Mathew K. ;
Sun, Shu ;
Rangan, Sundeep ;
Rappaport, Theodore S. ;
Erkip, Elza .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (06) :1164-1179
[3]   PROPAGATION MEASUREMENTS AND MODELS FOR WIRELESS COMMUNICATIONS CHANNELS [J].
ANDERSEN, JB ;
RAPPAPORT, TS ;
YOSHIDA, S .
IEEE COMMUNICATIONS MAGAZINE, 1995, 33 (01) :42-49
[4]   What Will 5G Be? [J].
Andrews, Jeffrey G. ;
Buzzi, Stefano ;
Choi, Wan ;
Hanly, Stephen V. ;
Lozano, Angel ;
Soong, Anthony C. K. ;
Zhang, Jianzhong Charlie .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (06) :1065-1082
[5]  
[Anonymous], 2012, 25996 3GPP TR
[6]   Five Disruptive Technology Directions for 5G [J].
Boccardi, Federico ;
Heath, Robert W., Jr. ;
Lozano, Angel ;
Marzetta, Thomas L. ;
Popovski, Petar .
IEEE COMMUNICATIONS MAGAZINE, 2014, 52 (02) :74-80
[7]  
Deng SJ, 2015, IEEE INT CONF COMM, P1244, DOI 10.1109/ICCW.2015.7247348
[8]   5G 3GPP-like Channel Models for Outdoor Urban Microcellular and Macrocellular Environments [J].
Haneda, Katsuyuki ;
Zhang, Jianhua ;
Tian, Lei ;
Liu, Guangyi ;
Zheng, Yi ;
Asplund, Henrik ;
Li, Jian ;
Wang, Yi ;
Steer, David ;
Li, Clara ;
Balercia, Tommaso ;
Lee, Sunguk ;
Kim, YoungSeok ;
Ghosh, Amitava ;
Thomas, Timothy ;
Nakamura, Takehiro ;
Kakishima, Yuichi ;
Imai, Tetsuro ;
Papadopoulas, Haralabos ;
Rappaport, Theodore S. ;
MacCartney, George R., Jr. ;
Samimi, Mathew K. ;
Sun, Shu ;
Koymen, Ozge ;
Hur, Sooyoung ;
Park, Jeongho ;
Zhang, Charlie ;
Mellios, Evangelos ;
Molisch, Andreas F. ;
Ghassemzadeh, Saeed S. ;
Ghosh, Arun .
2016 IEEE 83RD VEHICULAR TECHNOLOGY CONFERENCE (VTC SPRING), 2016,
[10]  
Hur S, 2014, INT BLACK SEA CONF, P83, DOI 10.1109/BlackSeaCom.2014.6849010