The FRB-SGR connection

被引:18
作者
Katz, J., I [1 ,2 ]
机构
[1] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[2] Washington Univ, McDonnell Ctr Space Sci, St Louis, MO 63130 USA
基金
美国国家科学基金会;
关键词
radiation mechanisms: nonthermal; radio continuum: transients; stars: magnetars; stars: neutron; gamma-rays: general; CURVATURE RADIATION; RADIO; BURSTS;
D O I
10.1093/mnras/staa3042
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The discovery that the Galactic Soft Gamma Repeater (SGR) 1935+2154 emitted Fast Radio Burst (FRB) 200428 simultaneous with a gamma-ray flare, demonstrated the common source and association of these phenomena. If FRB radio emission is the result of coherent curvature radiation, the net charge of the radiating 'bunches' or waves may be inferred from the radiated fields, independent of the mechanism by which the bunches are produced. A statistical argument indicates that the radiating bunches must have a Lorentz factor (sic) 10. The observed radiation frequencies indicate that their phase velocity (pattern speed) corresponds to Lorentz factors (sic) 100. Coulomb repulsion implies that the electrons making up these bunches have yet larger Lorentz factors, limited by their incoherent curvature radiation. These electrons also Compton scatter the soft gamma-rays of the SGR. In FRB 200428, the power they radiated coherently at radio frequencies exceeded that of Compton scattering, but in more luminous SGR outbursts, Compton scattering dominates, precluding the acceleration of energetic electrons. This explains the absence of a FRB associated with the giant 2004 December 27 outburst of SGR 1806-20. SGR with luminosity greater than or similar to 10(42) erg s(-1) are predicted not to emit FRB, while those of lesser luminosity can do so. 'Superbursts' like FRB 200428 are produced when narrowly collimated FRB are aligned with the line of sight; they are unusual, but not rare, and 'cosmological' FRB may be superbursts.
引用
收藏
页码:2319 / 2326
页数:8
相关论文
共 50 条
[1]  
[Anonymous], 2020, ARXIV200512164
[2]  
Biniamini P., 2019, MNRAS, V487, P1426
[3]  
Bochenek C., 2020, ATEL, V13684, P1
[4]  
CHIME/FRB Collaboration, 2020, APJ L, VL40
[5]   Spectropolarimetric Analysis of FRB 181112 at Microsecond Resolution: Implications for Fast Radio Burst Emission Mechanism [J].
Cho, Hyerin ;
Macquart, Jean-Pierre ;
Shannon, Ryan M. ;
Deller, Adam T. ;
Morrison, Ian S. ;
Ekers, Ron D. ;
Bannister, Keith W. ;
Farah, Wael ;
Qiu, Hao ;
Sammons, Mawson W. ;
Bailes, Matthew ;
Bhandari, Shivani ;
Day, Cherie K. ;
James, Clancy W. ;
Phillips, Chris J. ;
Prochaska, J. Xavier ;
Tuthill, John .
ASTROPHYSICAL JOURNAL LETTERS, 2020, 891 (02)
[6]   Non-cosmological FRBs from young supernova remnant pulsars [J].
Connor, Liam ;
Sievers, Jonathan ;
Pen, Ue-Li .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 458 (01) :L19-L23
[7]   Supergiant pulses from extragalactic neutron stars [J].
Cordes, J. M. ;
Wasserman, Ira .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 457 (01) :232-257
[8]   REPEATING FAST RADIO BURSTS FROM HIGHLY MAGNETIZED PULSARS TRAVELING THROUGH ASTEROID BELTS [J].
Dai, Z. G. ;
Wang, J. S. ;
Wu, X. F. ;
Huang, Y. F. .
ASTROPHYSICAL JOURNAL, 2016, 829 (01)
[9]   Drawn from the Dirac theory of the positron. [J].
Heisenberg, W. ;
Euler, H. .
ZEITSCHRIFT FUR PHYSIK, 1936, 98 (11-12) :714-732
[10]   The discovery, monitoring and environment of SGR J1935+2154 [J].
Israel, G. L. ;
Esposito, P. ;
Rea, N. ;
Zelati, F. Coti ;
Tiengo, A. ;
Campana, S. ;
Mereghetti, S. ;
Castillo, G. A. Rodriguez ;
Goets, D. ;
Burgay, M. ;
Possenti, A. ;
Zane, S. ;
Turolla, R. ;
Perna, R. ;
Cannizzaro, G. ;
Pons, J. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 457 (04) :3448-3456