Classifying Breast Cancer Subtypes Using Multiple Kernel Learning Based on Omics Data

被引:34
作者
Tao, Mingxin [1 ,2 ,3 ]
Song, Tianci [4 ]
Du, Wei [1 ]
Han, Siyu [1 ]
Zuo, Chunman [1 ]
Li, Ying [1 ]
Wang, Yan [1 ]
Yang, Zekun [1 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun 130012, Jilin, Peoples R China
[2] Univ Georgia, Computat Syst Biol Lab, Dept Biochem & Mol Biol, Athens, GA 30602 USA
[3] Univ Georgia, Inst Bioinformat, Athens, GA 30602 USA
[4] Univ Minnesota, Comp Sci & Engn, Minneapolis, MN 55455 USA
基金
中国国家自然科学基金;
关键词
breast cancer subtypes; MKL; mRNA; methylation data; CNV; MOLECULAR SUBTYPES; PROGESTERONE-RECEPTOR; ESTROGEN-RECEPTOR; TUMOR SUBTYPES; CLASSIFICATION; IDENTIFICATION; MANAGEMENT; PROGNOSIS; FEATURES; HER2;
D O I
10.3390/genes10030200
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
It is very significant to explore the intrinsic differences in breast cancer subtypes. These intrinsic differences are closely related to clinical diagnosis and designation of treatment plans. With the accumulation of biological and medicine datasets, there are many different omics data that can be viewed in different aspects. Combining these multiple omics data can improve the accuracy of prediction. Meanwhile; there are also many different databases available for us to download different types of omics data. In this article, we use estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) to define breast cancer subtypes and classify any two breast cancer subtypes using SMO-MKL algorithm. We collected mRNA data, methylation data and copy number variation (CNV) data from TCGA to classify breast cancer subtypes. Multiple Kernel Learning (MKL) is employed to use these omics data distinctly. The result of using three omics data with multiple kernels is better than that of using single omics data with multiple kernels. Furthermore; these significant genes and pathways discovered in the feature selection process are also analyzed. In experiments; the proposed method outperforms other state-of-the-art methods and has abundant biological interpretations.
引用
收藏
页数:14
相关论文
共 44 条
[1]   Luminal B Breast Cancer: Molecular Characterization, Clinical Management, and Future Perspectives [J].
Ades, Felipe ;
Zardavas, Dimitrios ;
Bozovic-Spasojevic, Ivana ;
Pugliano, Lina ;
Fumagalli, Debora ;
de Azambuja, Evandro ;
Viale, Giuseppe ;
Sotiriou, Christos ;
Piccart, Martine .
JOURNAL OF CLINICAL ONCOLOGY, 2014, 32 (25) :2794-+
[2]  
[Anonymous], CHOLESTEROL TRANSPOR
[3]  
[Anonymous], BIOL DIRECT
[4]  
[Anonymous], 2011, MACH LEARN RES
[5]  
[Anonymous], ONCOL TARGETS THER
[6]   Epidemiology and prognosis of breast cancer in young women [J].
Assi, Hussein A. ;
Khoury, Katia E. ;
Dbouk, Haifa ;
Khalil, Lana E. ;
Mouhieddine, Tarek H. ;
El Saghir, Nagi S. .
JOURNAL OF THORACIC DISEASE, 2013, 5 :S2-S8
[7]   Subtyping of Breast Cancer by Immunohistochemistry to Investigate a Relationship between Subtype and Short and Long Term Survival: A Collaborative Analysis of Data for 10,159 Cases from 12 Studies [J].
Blows, Fiona M. ;
Driver, Kristy E. ;
Schmidt, Marjanka K. ;
Broeks, Annegien ;
van Leeuwen, Flora E. ;
Wesseling, Jelle ;
Cheang, Maggie C. ;
Gelmon, Karen ;
Nielsen, Torsten O. ;
Blomqvist, Carl ;
Heikkila, Paivi ;
Heikkinen, Tuomas ;
Nevanlinna, Heli ;
Akslen, Lars A. ;
Begin, Louis R. ;
Foulkes, William D. ;
Couch, Fergus J. ;
Wang, Xianshu ;
Cafourek, Vicky ;
Olson, Janet E. ;
Baglietto, Laura ;
Giles, Graham G. ;
Severi, Gianluca ;
McLean, Catriona A. ;
Southey, Melissa C. ;
Rakha, Emad ;
Green, Andrew R. ;
Ellis, Ian O. ;
Sherman, Mark E. ;
Lissowska, Jolanta ;
Anderson, William F. ;
Cox, Angela ;
Cross, Simon S. ;
Reed, Malcolm W. R. ;
Provenzano, Elena ;
Dawson, Sarah-Jane ;
Dunning, Alison M. ;
Humphreys, Manjeet ;
Easton, Douglas F. ;
Garcia-Closas, Montserrat ;
Caldas, Carlos ;
Pharoah, Paul D. ;
Huntsman, David .
PLOS MEDICINE, 2010, 7 (05)
[8]   microRNA-Associated Progression Pathways and Potential Therapeutic Targets Identified by Integrated mRNA and microRNA Expression Profiling in Breast Cancer [J].
Buffa, Francesca M. ;
Camps, Carme ;
Winchester, Laura ;
Snell, Cameron E. ;
Gee, Harriet E. ;
Sheldon, Helen ;
Taylor, Marian ;
Harris, Adrian L. ;
Ragoussis, Jiannis .
CANCER RESEARCH, 2011, 71 (17) :5635-5645
[9]   Human epidermal growth factor receptor-2-positive breast cancer: current management of early, advanced, and recurrent disease [J].
Callahan, Rena ;
Hurvitz, Sara .
CURRENT OPINION IN OBSTETRICS & GYNECOLOGY, 2011, 23 (01) :37-43
[10]   XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway [J].
Chen, Xi ;
Iliopoulos, Dimitrios ;
Zhang, Qing ;
Tang, Qianzi ;
Greenblatt, Matthew B. ;
Hatziapostolou, Maria ;
Lim, Elgene ;
Tam, Wai Leong ;
Ni, Min ;
Chen, Yiwen ;
Mai, Junhua ;
Shen, Haifa ;
Hu, Dorothy Z. ;
Adoro, Stanley ;
Hu, Bella ;
Song, Minkyung ;
Tan, Chen ;
Landis, Melissa D. ;
Ferrari, Mauro ;
Shin, Sandra J. ;
Brown, Myles ;
Chang, Jenny C. ;
Liu, X. Shirley ;
Glimcher, Laurie H. .
NATURE, 2014, 508 (7494) :103-+