An interface finite element model can be used to predict healing outcome of bone fractures

被引:20
作者
Alierta, J. A. [1 ]
Perez, M. A. [2 ]
Garcia-Aznar, J. M. [2 ]
机构
[1] Minist Def, Escuela Politecn Super Ejercito, Madrid, Spain
[2] Univ Zaragoza, Aragon Inst Engn Res I3A, Zaragoza 50018, Spain
关键词
Bone fracture healing; Finite element prediction; Design of fracture fixators; Interfragmentary movement; TISSUE DIFFERENTIATION; GAP SIZE; SIMULATION; STABILITY; FIXATION; SHEAR; STIFFNESS; CALLUS; MECHANOREGULATION; MOVEMENT;
D O I
10.1016/j.jmbbm.2013.09.023
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
After fractures, bone can experience different potential outcomes: successful bone consolidation, non-union and bone failure. Although, there are a lot of factors that influence fracture healing, experimental studies have shown that the interfragmentary movement (IFM) is one of the main regulators for the course of bone healing. In this sense, computational models may help to improve the development of mechanical-based treatments for bone fracture healing. Hence, based on this fact, we propose a combined repair-failure mechanistic computational model to describe bone fracture healing. Despite being a simple model, it is able to correctly estimate the time course evolution of the IFM compared to in vivo measurements under different mechanical conditions. Therefore, this mathematical approach is especially suitable for modeling the healing response of bone to fractures treated with different mechanical fixators, simulating realistic clinical conditions. This model will be a useful tool to identify factors and define targets for patient specific therapeutics interventions. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:328 / 338
页数:11
相关论文
共 43 条
[31]   Spatial and temporal variations of mechanical properties and mineral content of the external callus during bone healing [J].
Manjubala, I. ;
Liu, Y. ;
Epari, D. R. ;
Roschger, P. ;
Schell, H. ;
Fratzl, P. ;
Duda, G. N. .
BONE, 2009, 45 (02) :185-192
[32]   The biology of fracture healing [J].
Marsell, Richard ;
Einhorn, Thomas A. .
INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2011, 42 (06) :551-555
[33]   Modelling the mechanical behaviour of living bony interfaces [J].
Moreo, P. ;
Perez, M. A. ;
Garcia-Aznar, J. M. ;
Doblare, M. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (35-36) :3300-3314
[34]   The influence of active shear or compressive motion on fracture-healing [J].
Park, SH ;
O'Connor, K ;
McKellop, H ;
Sarmiento, A .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1998, 80A (06) :868-878
[35]   Evolution of the internal fixation of long bone fractures - The scientific basis of biological internal fixation: Choosing a new balance between stability and biology [J].
Perren, SM .
JOURNAL OF BONE AND JOINT SURGERY-BRITISH VOLUME, 2002, 84B (08) :1093-1110
[36]   Effect of the fixator stiffness on the young regenerate bone after bone transport: Computational approach [J].
Reina-Romo, E. ;
Gomez-Benito, M. J. ;
Dominguez, J. ;
Niemeyer, F. ;
Wehner, T. ;
Simon, U. ;
Claes, L. E. .
JOURNAL OF BIOMECHANICS, 2011, 44 (05) :917-923
[37]   MEASURING STIFFNESS CAN DEFINE HEALING OF TIBIAL FRACTURES [J].
RICHARDSON, JB ;
CUNNINGHAM, JL ;
GOODSHIP, AE ;
OCONNOR, BT ;
KENWRIGHT, J .
JOURNAL OF BONE AND JOINT SURGERY-BRITISH VOLUME, 1994, 76B (03) :389-394
[38]   The course of bone healing is influenced by the initial shear fixation stability [J].
Schell, H ;
Epari, DR ;
Kassi, JP ;
Bragulla, H ;
Bail, HJ ;
Duda, GN .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2005, 23 (05) :1022-1028
[39]   Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic [J].
Shefelbine, SJ ;
Augat, P ;
Claes, L ;
Simon, U .
JOURNAL OF BIOMECHANICS, 2005, 38 (12) :2440-2450
[40]   A numerical model of the fracture healing process that describes tissue development and revascularisation [J].
Simon, U. ;
Augat, P. ;
Utz, M. ;
Claes, L. .
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2011, 14 (01) :79-93