Macroscopic rate equation modeling of trapping/detrapping of hydrogen isotopes in tungsten materials

被引:74
作者
Hodille, E. A. [1 ]
Bonnin, X. [2 ]
Bisson, R. [3 ]
Angot, T. [3 ]
Becquart, C. S. [4 ]
Layet, J. M. [3 ]
Grisolia, C. [1 ]
机构
[1] CEA, IRFM, F-13108 St Paul Les Durance, France
[2] Univ Paris 13, Sorbonne Paris Cite, LSPM CNRS, F-93430 Villetaneuse, France
[3] Aix Marseille Univ, CNRS, PIIM, UMR 7345, F-13397 Marseille, France
[4] Univ Lille 1, UMET, F-59655 Villeneuve Dascq, France
基金
欧盟地平线“2020”;
关键词
fuel retention; deuterium; tungsten; modeling; DEUTERIUM RETENTION; POLYCRYSTALLINE TUNGSTEN; THERMAL-DESORPTION; DIFFUSION; DEPENDENCE; RELEASE;
D O I
10.1016/j.jnucmat.2015.06.041
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Relevant parameters for trapping of Hydrogen Isotopes (HIs) in polycrystalline tungsten are determined with the MHIMS code (Migration of Hydrogen Isotopes in MaterialS) which is used to reproduce Thermal Desorption Spectrometry experiments. Three types of traps are found: two intrinsic traps (detrapping energy of 0.87 eV and 1.00 eV) and one extrinsic trap created by ion irradiation (detrapping energy of 1.50 eV). Then MHIMS is used to simulate HIs retention at different fluences and different implantation temperatures. Simulation results agree well with experimental data. It is shown that at 300 K the retention is limited by diffusion in the bulk. For implantation temperatures above 500 K, the retention is limited by trap creation processes. Above 600 K, the retention drops by two orders of magnitude as compared to the retention at 300 K. With the determined detrapping energies, HIs outgassing at room temperature is predicted. After ions implantation at 300 K, 45% of the initial retention is lost to vacuum in 300 000 s while during this time the remaining trapped HIs diffuse twice as deep into the bulk. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:424 / 431
页数:8
相关论文
共 32 条
[1]   Depth distribution of deuterium in single- and polycrystalline tungsten up to depths of several micrometers [J].
Alimov, VK ;
Roth, J ;
Mayer, M .
JOURNAL OF NUCLEAR MATERIALS, 2005, 337 (1-3) :619-623
[2]   Dynamic fuel retention in tokamak wall materials: An in situ laboratory study of deuterium release from polycrystalline tungsten at room temperature [J].
Bisson, R. ;
Markelj, S. ;
Mourey, O. ;
Ghiorghiu, F. ;
Achkasov, K. ;
Layet, J. -M. ;
Roubin, P. ;
Cartry, G. ;
Grisolia, C. ;
Angot, T. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 467 :432-438
[3]  
Bonnin X., 2014, J NUCL MAT
[4]   Hydrogen isotope retention and recycling in fusion reactor plasma-facing components [J].
Causey, RA .
JOURNAL OF NUCLEAR MATERIALS, 2002, 300 (2-3) :91-117
[5]   HYDROGEN BUBBLES IN METALS [J].
CONDON, JB ;
SCHOBER, T .
JOURNAL OF NUCLEAR MATERIALS, 1993, 207 :1-24
[6]  
Duesing G., 1969, Crystal Lattice Defects, V1, P55
[7]   Hydrogen diffusion and vacancies formation in tungsten: Density Functional Theory calculations and statistical models [J].
Fernandez, N. ;
Ferro, Y. ;
Kato, D. .
ACTA MATERIALIA, 2015, 94 :307-318
[8]   SOLUTION AND DIFFUSION OF HYDROGEN IN TUNGSTEN [J].
FRAUENFELDER, R .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1969, 6 (03) :388-+
[9]   Re-emission and thermal desorption of deuterium from plasma sprayed tungsten coatings for application in ASDEX-upgrade [J].
GarciaRosales, C ;
Franzen, P ;
Plank, H ;
Roth, J ;
Gauthier, E .
JOURNAL OF NUCLEAR MATERIALS, 1996, 233 :803-808
[10]   Deuterium retention in tungsten for fusion use [J].
Haasz, AA ;
Davis, JW ;
Poon, M ;
Macaulay-Newcombe, RG .
JOURNAL OF NUCLEAR MATERIALS, 1998, 258 :889-895