EXTREMAL ERGODIC MEASURES AND THE FINITENESS PROPERTY OF MATRIX SEMIGROUPS
被引:0
|
作者:
Dai, Xiongping
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R ChinaNanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
Dai, Xiongping
[1
]
Huang, Yu
论文数: 0引用数: 0
h-index: 0
机构:
Zhongshan Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R ChinaNanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
Huang, Yu
[2
]
Xiao, Mingqing
论文数: 0引用数: 0
h-index: 0
机构:
So Illinois Univ, Dept Math, Carbondale, IL 62901 USANanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
Xiao, Mingqing
[3
]
机构:
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[2] Zhongshan Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[3] So Illinois Univ, Dept Math, Carbondale, IL 62901 USA
The finiteness property;
joint/generalized spectral radius;
extremal probability;
random product of matrices;
GENERALIZED SPECTRAL-RADIUS;
DISCRETE INCLUSIONS;
LYAPUNOV INDICATOR;
LINEAR-SYSTEMS;
CONJECTURE;
STABILITY;
COUNTEREXAMPLE;
PRODUCTS;
D O I:
暂无
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let S = {S-1, ... , S-K} be a finite set of complex d x d matrices and Sigma(+)(K) be the compact space of all one-sided infinite sequences i. : N -> {1, ... , K}. An ergodic probability mu(*) of the Markov shift theta : Sigma(+)(K) -> Sigma(+)(K) ;i, -> i. + 1, is called " extremal" for S if rho(S) = lim(n ->infinity) root parallel to S-i1 ... S-in parallel to holds for mu(*)-a.e. i. is an element of Sigma(+)(K), where rho(S) denotes the generalized/joint spectral radius of S. Using the extremal norm and the Kingman subadditive ergodic theorem, it is shown that S has the spectral finiteness property (i. e. rho(S) = (n)root rho((Si1) ... S-in) for some finite-length word (i(1), ... , i(n))) if and only if for some extremal measure mu* of S, it has at least one periodic density point i. is an element of Sigma(+)(K)
机构:
Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R China
Liu, Junwei
Huang, Jie
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R China
机构:
Govt Arts Coll, Dept Math, Coimbatore, Tamilnadu, IndiaGovt Arts Coll, Dept Math, Coimbatore, Tamilnadu, India
Jayanthi, N.
Santhakumari, R.
论文数: 0引用数: 0
h-index: 0
机构:
Govt Arts Coll, Dept Math, Coimbatore, Tamilnadu, India
Sri Ramakrishna Coll Arts & Sci, Dept Math, Coimbatore, IndiaGovt Arts Coll, Dept Math, Coimbatore, Tamilnadu, India
Santhakumari, R.
Rajchakit, R. Grienggrai
论文数: 0引用数: 0
h-index: 0
机构:
Maejo Univ, Fac Sci, Dept Math, Chiang Mai, ThailandGovt Arts Coll, Dept Math, Coimbatore, Tamilnadu, India
Rajchakit, R. Grienggrai
Praneesh, M.
论文数: 0引用数: 0
h-index: 0
机构:
Sri Ramakrishna Coll Arts & Sci, Dept Comp Sci, Coimbatore, IndiaGovt Arts Coll, Dept Math, Coimbatore, Tamilnadu, India