ANALYSIS OF FISHER INFORMATION AND THE CRAMER-RAO BOUND FOR NONLINEAR PARAMETER ESTIMATION AFTER COMPRESSED SENSING

被引:0
作者
Pakrooh, Pooria [1 ]
Scharf, Louis L. [2 ]
Pezeshki, Ali [1 ]
Chi, Yuejie [3 ]
机构
[1] Colorado State Univ, ECE Dept, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Dept Math & Stat, Ft Collins, CO 80523 USA
[3] Ohio State Univ, Dept ECE & Biomed Informat, Columbus, OH 43210 USA
来源
2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2013年
关键词
Cramer-Rao bound; compressed sensing; Fisher information; Johnson-Lindenstrauss Lemma; parameter estimation; MATRICES; PROOF;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we analyze the impact of compressed sensing with random matrices on Fisher information and the CRB for estimating unknown parameters in the mean value function of a multivariate normal distribution. We consider the class of random compression matrices that satisfy a version of the Johnson-Lindenstrauss lemma, and we derive analytical lower and upper bounds on the CRB for estimating parameters from randomly compressed data. These bounds quantify the potential loss in CRB as a function of Fisher information of the non-compressed data. In our numerical examples, we consider a direction of arrival estimation problem and compare the actual loss in CRB with our bounds.
引用
收藏
页码:6630 / 6634
页数:5
相关论文
共 50 条
  • [31] APPLICATION OF THE CRAMER-RAO BOUND TO TARGET MOTION ANALYSIS
    MOON, JR
    ELECTRONICS LETTERS, 1979, 15 (08) : 236 - 237
  • [32] Cramer-Rao Low Bound Estimation for MSE of SCoSaMP Algorithm
    Wang, Cheng
    Chen, Peng
    Yang, Huahui
    Li, Wanling
    Liu, Deliang
    Meng, Chen
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2019, 463 : 2158 - 2165
  • [33] Generalized Cramer-Rao inequality and uncertainty relation for fisher information on FrFT
    Xu, Guanlei
    Xu, Xiaogang
    Wang, Xun
    Wang, Xiaotong
    SIGNAL IMAGE AND VIDEO PROCESSING, 2020, 14 (03) : 499 - 507
  • [34] An approximate quantum Cramer-Rao bound based on skew information
    Luati, Alessandra
    BERNOULLI, 2011, 17 (02) : 628 - 642
  • [35] Compressive TDOA Estimation: Cramer-Rao Bound and Incoherent Processing
    Cao, Hui
    Chan, Y. T.
    So, Hing Cheung
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2020, 56 (04) : 3326 - 3331
  • [36] The Risk-Unbiased Cramer-Rao Bound for Non-Bayesian Multivariate Parameter Estimation
    Bar, Shahar
    Tabrikian, Joseph
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (18) : 4920 - 4934
  • [37] Intelligent Reflecting Surface Enabled Sensing: Cramer-Rao Bound Optimization
    Song, Xianxin
    Xu, Jie
    Liu, Fan
    Han, Tony Xiao
    Eldar, Yonina C.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 2011 - 2026
  • [38] Uniformly improving the Cramer-Rao bound and maximum-likelihood estimation
    Eldar, Yonina C.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (08) : 2943 - 2956
  • [39] Intrinsic Bayesian Cramer-Rao Bound With an Application to Covariance Matrix Estimation
    Bouchard, Florent
    Renaux, Alexandre
    Ginolhac, Guillaume
    Breloy, Arnaud
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (12) : 9261 - 9276
  • [40] Cramer-Rao bound of spatio-temporal linear pre-processing in parameter estimation from sensor array
    Sellone, F
    Falletti, E
    SIGNAL PROCESSING, 2004, 84 (02) : 387 - 405