New approaches for delineating n-dimensional hypervolumes

被引:262
作者
Blonder, Benjamin [1 ]
Morrow, Cecina Babich [2 ]
Maitner, Brian [3 ]
Harris, David J. [4 ]
Lamanna, Christine [5 ]
Violle, Cyrille [6 ]
Enquist, Brian J. [3 ,7 ]
Kerkhoff, Andrew J. [2 ]
机构
[1] Univ Oxford, Environm Change Inst, Sch Geog & Environm, Oxford, England
[2] Kenyon Coll, Dept Biol, Gambier, OH 43022 USA
[3] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ USA
[4] Univ Florida, Dept Wildlife Ecol & Conservat, Gainesville, FL USA
[5] World Agroforestry Ctr, Nairobi, Kenya
[6] Paul Valery Univ Montpellier, CNRS, UMR 5175, CEFE,EPHE, Montpellier 5, France
[7] Santa Fe Inst, Santa Fe, NM 87501 USA
来源
METHODS IN ECOLOGY AND EVOLUTION | 2018年 / 9卷 / 02期
基金
美国国家科学基金会; 英国自然环境研究理事会; 欧洲研究理事会;
关键词
functional diversity; functional space; hypervolume; kernel density estimation; niche; niche modelling; support vector machine; FUNCTIONAL DIVERSITY; ECOLOGICAL NICHES; TRAIT SPACE; OVERLAP; SUPPORT; SHIFT;
D O I
10.1111/2041-210X.12865
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
1. Hutchinson's n-dimensional hypervolume concept underlies many applications in contemporary ecology and evolutionary biology. Estimating hypervolumes from sampled data has been an ongoing challenge due to conceptual and computational issues. 2. We present new algorithms for delineating the boundaries and probability density within n-dimensional hypervolumes. The methods produce smooth boundaries that can fit data either more loosely (Gaussian kernel density estimation) or more tightly (one-classification via support vector machine). Further, the algorithms can accept abundance-weighted data, and the resulting hypervolumes can be given a probabilistic interpretation and projected into geographic space. 3. We demonstrate the properties of these methods on a large dataset that characterises the functional traits and geographic distribution of thousands of plants. The methods are available in version >= 2.0.7 of the HYPERVOLUME R package. 4. These new algorithms provide: (i) a more robust approach for delineating the shape and density of n-dimensional hypervolumes; (ii) more efficient performance on large and high-dimensional datasets; and (iii) improved measures of functional diversity and environmental niche breadth.
引用
收藏
页码:305 / 319
页数:15
相关论文
共 51 条
[11]   Traits Without Borders: Integrating Functional Diversity Across Scales [J].
Carmona, Carlos P. ;
de Bello, Francesco ;
Mason, Norman W. H. ;
Leps, Jan .
TRENDS IN ECOLOGY & EVOLUTION, 2016, 31 (05) :382-394
[12]   Habitat filtering not dispersal limitation shapes oceanic island floras: species assembly of the Galapagos archipelago [J].
Carvajal-Endara, Sofia ;
Hendry, Andrew P. ;
Emery, Nancy C. ;
Davies, T. Jonathan .
ECOLOGY LETTERS, 2017, 20 (04) :495-504
[13]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[14]  
Cornwell WK, 2006, ECOLOGY, V87, P1465, DOI 10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO
[15]  
2
[16]   The global spectrum of plant form and function [J].
Diaz, Sandra ;
Kattge, Jens ;
Cornelissen, Johannes H. C. ;
Wright, Ian J. ;
Lavorel, Sandra ;
Dray, Stephane ;
Reu, Bjoern ;
Kleyer, Michael ;
Wirth, Christian ;
Prentice, I. Colin ;
Garnier, Eric ;
Boenisch, Gerhard ;
Westoby, Mark ;
Poorter, Hendrik ;
Reich, Peter B. ;
Moles, Angela T. ;
Dickie, John ;
Gillison, Andrew N. ;
Zanne, Amy E. ;
Chave, Jerome ;
Wright, S. Joseph ;
Sheremet'ev, Serge N. ;
Jactel, Herve ;
Baraloto, Christopher ;
Cerabolini, Bruno ;
Pierce, Simon ;
Shipley, Bill ;
Kirkup, Donald ;
Casanoves, Fernando ;
Joswig, Julia S. ;
Guenther, Angela ;
Falczuk, Valeria ;
Rueger, Nadja ;
Mahecha, Miguel D. ;
Gorne, Lucas D. .
NATURE, 2016, 529 (7585) :167-+
[17]   Modelling ecological niches with support vector machines [J].
Drake, John M. ;
Randin, Christophe ;
Guisan, Antoine .
JOURNAL OF APPLIED ECOLOGY, 2006, 43 (03) :424-432
[18]   Cross-validation bandwidth matrices for multivariate kernel density estimation [J].
Duong, T ;
Hazelton, ML .
SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (03) :485-506
[19]   Novel methods improve prediction of species' distributions from occurrence data [J].
Elith, J ;
Graham, CH ;
Anderson, RP ;
Dudík, M ;
Ferrier, S ;
Guisan, A ;
Hijmans, RJ ;
Huettmann, F ;
Leathwick, JR ;
Lehmann, A ;
Li, J ;
Lohmann, LG ;
Loiselle, BA ;
Manion, G ;
Moritz, C ;
Nakamura, M ;
Nakazawa, Y ;
Overton, JM ;
Peterson, AT ;
Phillips, SJ ;
Richardson, K ;
Scachetti-Pereira, R ;
Schapire, RE ;
Soberón, J ;
Williams, S ;
Wisz, MS ;
Zimmermann, NE .
ECOGRAPHY, 2006, 29 (02) :129-151
[20]   Scaling from Traits to Ecosystems: Developing a General Trait Driver Theory via Integrating Trait-Based and Metabolic Scaling Theories [J].
Enquist, Brian J. ;
Norberg, Jon ;
Bonser, Stephen P. ;
Violle, Cyrille ;
Webb, Colleen T. ;
Henderson, Amanda ;
Sloat, Lindsey L. ;
Savage, Van M. .
ADVANCES IN ECOLOGICAL RESEARCH, VOL 52: TRAIT-BASED ECOLOGY - FROM STRUCTURE TO FUNCTION, 2015, 52 :249-318