Bayesian analysis of the inverse generalized gamma distribution using objective priors
被引:14
作者:
Ramos, Pedro L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Math & Comp Sci, Sao Carlos, BrazilUniv Sao Paulo, Inst Math & Comp Sci, Sao Carlos, Brazil
Ramos, Pedro L.
[1
]
Mota, Alex L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Sao Carlos, Dept Stat, Sao Carlos, BrazilUniv Sao Paulo, Inst Math & Comp Sci, Sao Carlos, Brazil
Mota, Alex L.
[2
]
Ferreira, Paulo H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Math & Comp Sci, Sao Carlos, Brazil
Univ Fed Bahia, Dept Stat, Salvador, BA, BrazilUniv Sao Paulo, Inst Math & Comp Sci, Sao Carlos, Brazil
Ferreira, Paulo H.
[1
,3
]
Ramos, Eduardo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Math & Comp Sci, Sao Carlos, BrazilUniv Sao Paulo, Inst Math & Comp Sci, Sao Carlos, Brazil
Ramos, Eduardo
[1
]
Tomazella, Vera L. D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Sao Carlos, Dept Stat, Sao Carlos, BrazilUniv Sao Paulo, Inst Math & Comp Sci, Sao Carlos, Brazil
Tomazella, Vera L. D.
[2
]
Louzada, Francisco
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Math & Comp Sci, Sao Carlos, BrazilUniv Sao Paulo, Inst Math & Comp Sci, Sao Carlos, Brazil
Louzada, Francisco
[1
]
机构:
[1] Univ Sao Paulo, Inst Math & Comp Sci, Sao Carlos, Brazil
[2] Univ Fed Sao Carlos, Dept Stat, Sao Carlos, Brazil
[3] Univ Fed Bahia, Dept Stat, Salvador, BA, Brazil
The inverse generalized gamma (IGG) distribution can be particularly useful for modelling reliability (survival) data with an upside-down bathtub hazard rate function. The mathematical properties and estimation methods are not known in the literature. In this paper, we provide Bayesian inferences for the IGG distribution parameters using non-informative priors, namely, the Jeffreys prior and the reference prior. Extensive numerical simulations are conducted to investigate the performance of the proposed estimation method when compared with the classical inference. Finally, the potentiality of the IGG model is analysed by employing real environmental data.
引用
收藏
页码:786 / 816
页数:31
相关论文
共 71 条
[1]
Abid S. H., 2016, INT J SYST SCI APPL, V1, P16