Machine Learning Framework for Inferring Cognitive State from Magnetoencephalographic (MEG) Signals

被引:2
|
作者
Zhdanov, Andrey [1 ]
Hendler, Talma [1 ]
Ungerleider, Leslie [1 ]
Intrator, Nathan [1 ]
机构
[1] Tel Aviv Univ, Tel Aviv Sourasky Med Ctr, Funct Brain Imaging Unit, IL-69978 Tel Aviv, Israel
来源
ADVANCES IN COGNITIVE NEURODYNAMICS, PROCEEDINGS | 2008年
关键词
D O I
10.1007/978-1-4020-8387-7_67
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We develop a robust linear classification framework for inferring mental states from electrophysiological (MEG and EEG) signals. The framework is centered around the concept of temporal evolution of regularized Fisher Linear Discriminant classifier constructed from the instantaneous signal value. The value of the regularization parameter is selected to minimize the classifier error estimated by cross-validation. In addition, we build upon the proposed framework to develop a feature selection technique. We demonstrate the framework and the feature selection technique on MEG data recorded from 10 subjects in a simple visual classification experiment. We show that using a very simple adaptive feature selection strategy yields considerable improvement of classifier accuracy over the strategy that uses fixed number of features.
引用
收藏
页码:393 / +
页数:2
相关论文
共 50 条
  • [41] A machine learning model for emotion recognition from physiological signals
    Dominguez-Jimenez, J. A.
    Campo-Landines, K. C.
    Martinez-Santos, J. C.
    Delahoz, E. J.
    Contreras-Ortiz, S. H.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 55
  • [42] Emotion Classification from Electroencephalographic Signals Using Machine Learning
    Sauceda, Jesus Arturo Mendivil
    Marquez, Bogart Yail
    Elizondo, Jose Jaime Esqueda
    BRAIN SCIENCES, 2024, 14 (12)
  • [43] From fundamental signals to stock volatility: A machine learning approach
    Liao, Cunfei
    Ma, Tian
    PACIFIC-BASIN FINANCE JOURNAL, 2024, 84
  • [44] Inferring phylogenetic networks from multifurcating trees via cherry picking and machine learning
    Bernardini, Giulia
    van Iersel, Leo
    Julien, Esther
    Stougie, Leen
    MOLECULAR PHYLOGENETICS AND EVOLUTION, 2024, 199
  • [45] Inferring tumor purity using multi-omics data based on a uniform machine learning framework MoTP
    Lu, Qiqi
    Liu, Zhixian
    Wang, Xiaosheng
    BRIEFINGS IN BIOINFORMATICS, 2025, 26 (01)
  • [46] Performance Comparison of Machine Learning and Deep Learning While Classifying Driver's Cognitive State
    Bhardwaj, Rahul
    Parameswaran, Swathy
    Balasubramanian, Venkatesh
    2018 IEEE 13TH INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS (IEEE ICIIS), 2018, : 102 - 106
  • [47] Decoding Speech from Single Trial MEG Signals Using Convolutional Neural Networks and Transfer Learning
    Dash, Debadatta
    Ferrari, Paul
    Heitzman, Daragh
    Wang, Jun
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 5531 - 5535
  • [48] Automatic Speech Activity Recognition from MEG Signals Using Seq2Seq Learning
    Dash, Debadatta
    Ferrari, Paul
    Malik, Saleem
    Wang, Jun
    2019 9TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2019, : 340 - 343
  • [49] Cognitive Radio Networks Channel State Estimation Using Machine Learning Techniques
    Tarek, Dina
    Benslimane, Abderrahim
    Darwish, M.
    Kotb, Amira M.
    2019 15TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2019, : 342 - 347
  • [50] Machine Learning Approaches for Cognitive State Classification and Brain Activity Prediction: A Survey
    Parida, Shantipriya
    Dehuri, Satchidananda
    Cho, Sung-Bae
    CURRENT BIOINFORMATICS, 2015, 10 (04) : 344 - 359