Machine Learning Framework for Inferring Cognitive State from Magnetoencephalographic (MEG) Signals

被引:2
|
作者
Zhdanov, Andrey [1 ]
Hendler, Talma [1 ]
Ungerleider, Leslie [1 ]
Intrator, Nathan [1 ]
机构
[1] Tel Aviv Univ, Tel Aviv Sourasky Med Ctr, Funct Brain Imaging Unit, IL-69978 Tel Aviv, Israel
来源
ADVANCES IN COGNITIVE NEURODYNAMICS, PROCEEDINGS | 2008年
关键词
D O I
10.1007/978-1-4020-8387-7_67
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We develop a robust linear classification framework for inferring mental states from electrophysiological (MEG and EEG) signals. The framework is centered around the concept of temporal evolution of regularized Fisher Linear Discriminant classifier constructed from the instantaneous signal value. The value of the regularization parameter is selected to minimize the classifier error estimated by cross-validation. In addition, we build upon the proposed framework to develop a feature selection technique. We demonstrate the framework and the feature selection technique on MEG data recorded from 10 subjects in a simple visual classification experiment. We show that using a very simple adaptive feature selection strategy yields considerable improvement of classifier accuracy over the strategy that uses fixed number of features.
引用
收藏
页码:393 / +
页数:2
相关论文
共 50 条
  • [21] Machine learning for inferring animal behavior from location and movement data
    Wang, Guiming
    ECOLOGICAL INFORMATICS, 2019, 49 : 69 - 76
  • [22] Inferring Grandiose Narcissism From Text: LIWC Versus Machine Learning
    Cutler, Andrew D.
    Carden, Stephen W.
    Dorough, Hannah L.
    Holtzman, Nicholas S.
    JOURNAL OF LANGUAGE AND SOCIAL PSYCHOLOGY, 2021, 40 (02) : 260 - 276
  • [23] Inferring diagnoses from prescription data: a machine-learning approach
    Pinto, A. S.
    Perfeito, L.
    Miranda, T.
    Mesquita, S.
    Pereira, N.
    Goncalves-Sa, J.
    EUROPEAN JOURNAL OF PUBLIC HEALTH, 2024, 34
  • [24] Namatad: Inferring Occupancy From Building Sensors Using Machine Learning
    Dey, Anindya
    Ling, Xiao
    Syed, Adnan
    Zheng, Yuewen
    Landowski, Bob
    Anderson, David
    Stuart, Kim
    Tolentino, Matthew E.
    2016 IEEE 3RD WORLD FORUM ON INTERNET OF THINGS (WF-IOT), 2016, : 478 - 483
  • [25] Inferring hand movement kinematics from MEG, EEG and intracranial EEG: From brain-machine interfaces to motor rehabilitation
    Jerbi, K.
    Vidal, J. R.
    Mattout, J.
    Maby, E.
    Lecaignard, F.
    Ossandon, T.
    Hamame, C. M.
    Dalal, S. S.
    Bouet, R.
    Lachaux, J. -P.
    Leahy, R. M.
    Baillet, S.
    Garnero, L.
    Delpuech, C.
    Bertrand, O.
    IRBM, 2011, 32 (01) : 8 - 18
  • [26] Real time processing of affective and cognitive stimuli in the human brain extracted from MEG signals
    Ioannides, AA
    Liu, LC
    Theofilou, D
    Dammers, J
    Burne, T
    Ambler, T
    Rose, S
    BRAIN TOPOGRAPHY, 2000, 13 (01) : 11 - 19
  • [27] Real Time Processing of Affective and Cognitive Stimuli in the Human Brain Extracted from MEG Signals
    Andreas A. Ioannides
    Lichan Liu
    Dionyssios Theofilou
    Jürgen Dammers
    Tom Burne
    TimAmbler Ambler
    Steven Rose
    Brain Topography, 2000, 13 : 11 - 19
  • [28] A flexible machine learning based framework for state of charge evaluation
    Stighezza, Mattia
    Bianchi, Valentina
    Toscani, Andrea
    De Munari, Ilaria
    2022 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AUTOMOTIVE (IEEE METROAUTOMOTIVE 2022), 2022, : 111 - 115
  • [29] Model of Learning Assessment to Measure Student Learning: Inferring of Concept State of Cognitive Skill Level in concept space
    Aboalela, Rania
    Khan, Javed
    2016 3RD INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE (ISCMI 2016), 2016, : 189 - 195
  • [30] Inferring galaxy dark halo properties from visible matter with machine learning
    von Marttens, Rodrigo
    Casarini, Luciano
    Napolitano, Nicola R.
    Wu, Sirui
    Amaro, Valeria
    Li, Rui
    Tortora, Crescenzo
    Canabarro, Askery
    Wang, Yang
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 516 (03) : 3924 - 3943