Machine Learning Framework for Inferring Cognitive State from Magnetoencephalographic (MEG) Signals

被引:2
|
作者
Zhdanov, Andrey [1 ]
Hendler, Talma [1 ]
Ungerleider, Leslie [1 ]
Intrator, Nathan [1 ]
机构
[1] Tel Aviv Univ, Tel Aviv Sourasky Med Ctr, Funct Brain Imaging Unit, IL-69978 Tel Aviv, Israel
来源
ADVANCES IN COGNITIVE NEURODYNAMICS, PROCEEDINGS | 2008年
关键词
D O I
10.1007/978-1-4020-8387-7_67
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We develop a robust linear classification framework for inferring mental states from electrophysiological (MEG and EEG) signals. The framework is centered around the concept of temporal evolution of regularized Fisher Linear Discriminant classifier constructed from the instantaneous signal value. The value of the regularization parameter is selected to minimize the classifier error estimated by cross-validation. In addition, we build upon the proposed framework to develop a feature selection technique. We demonstrate the framework and the feature selection technique on MEG data recorded from 10 subjects in a simple visual classification experiment. We show that using a very simple adaptive feature selection strategy yields considerable improvement of classifier accuracy over the strategy that uses fixed number of features.
引用
收藏
页码:393 / +
页数:2
相关论文
共 50 条
  • [1] Sintel: A Machine Learning Framework to Extract Insights from Signals
    Alnegheimish, Sarah
    Liu, Dongyu
    Sala, Carles
    Berti-Equille, Laure
    Veeramachaneni, Kalyan
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA (SIGMOD '22), 2022, : 1855 - 1865
  • [2] Inferring Cognitive State from Observed Behaviour
    Sharples, Sarah
    Edwards, Tamsyn
    Balfe, Nora
    Wilson, John R.
    ADVANCES IN HUMAN ASPECTS OF ROAD AND RAIL TRANSPORTATION, 2013, : 633 - 642
  • [3] Inferring colloidal interaction from scattering by machine learning
    Tung, Chi-Huan
    Chang, Shou-Yi
    Chang, Ming-Ching
    Carrillo, Jan-Michael
    Sumpter, Bobby
    Do, Changwoo
    Chen, Wei-Ren
    CARBON TRENDS, 2023, 10
  • [4] Modern Machine Learning Algorithms For Classifying Cognitive and Affective States From Electroencephalography Signals
    Appriou, Aurelien
    Cichocki, Andrzej
    Lotte, Fabien
    IEEE SYSTEMS MAN AND CYBERNETICS MAGAZINE, 2020, 6 (03): : 29 - 38
  • [5] Inferring Computational State Machine Models from Program Executions
    Walkinshaw, Neil
    Hall, Mathew
    32ND IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION (ICSME 2016), 2016, : 123 - 133
  • [6] Resting-state magnetoencephalographic oscillatory connectivity to identify patients with chronic migraine using machine learning
    Hsiao, Fu-Jung
    Chen, Wei-Ta
    Pan, Li-Ling Hope
    Liu, Hung-Yu
    Wang, Yen-Feng
    Chen, Shih-Pin
    Lai, Kuan-Lin
    Coppola, Gianluca
    Wang, Shuu-Jiun
    JOURNAL OF HEADACHE AND PAIN, 2022, 23 (01):
  • [7] A Machine Learning Framework for Predicting Dementia and Mild Cognitive Impairment
    Stamate, Daniel
    Alghamdi, Wajdi
    Ogg, Jeremy
    Hoile, Richard
    Murtagh, Fionn
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 671 - 678
  • [8] Resting-state magnetoencephalographic oscillatory connectivity to identify patients with chronic migraine using machine learning
    Fu-Jung Hsiao
    Wei-Ta Chen
    Li-Ling Hope Pan
    Hung-Yu Liu
    Yen-Feng Wang
    Shih-Pin Chen
    Kuan-Lin Lai
    Gianluca Coppola
    Shuu-Jiun Wang
    The Journal of Headache and Pain, 2022, 23
  • [9] Predictive regression modeling with MEG/EEG: from source power to signals and cognitive states
    Sabbagh, David
    Ablin, Pierre
    Varoquaux, Gael
    Gramfort, Alexandre
    Engemann, Denis A.
    NEUROIMAGE, 2020, 222
  • [10] Cognitive Workload Recognition Using EEG Signals and Machine Learning: A Review
    Zhou, Yueying
    Huang, Shuo
    Xu, Ziming
    Wang, Pengpai
    Wu, Xia
    Zhang, Daoqiang
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2022, 14 (03) : 799 - 818