Training Deep Convolutional Neural Networks with Active Learning for Exudate Classification in Eye Fundus Images

被引:26
作者
Otalora, Sebastian [2 ]
Perdomo, Oscar [1 ]
Gonzalez, Fabio [1 ]
Mueller, Henning [2 ]
机构
[1] Univ Nacl Colombia, Bogota, Colombia
[2] Univ Appl Sci Western Switzerland HES SO, Sierre, Switzerland
来源
INTRAVASCULAR IMAGING AND COMPUTER ASSISTED STENTING, AND LARGE-SCALE ANNOTATION OF BIOMEDICAL DATA AND EXPERT LABEL SYNTHESIS | 2017年 / 10552卷
关键词
DIABETIC-RETINOPATHY;
D O I
10.1007/978-3-319-67534-3_16
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Training deep convolutional neural network for classification in medical tasks is often difficult due to the lack of annotated data samples. Deep convolutional networks (CNN) has been successfully used as an automatic detection tool to support the grading of diabetic retinopathy and macular edema. Nevertheless, the manual annotation of exudates in eye fundus images used to classify the grade of the DR is very time consuming and repetitive for clinical personnel. Active learning algorithms seek to reduce the labeling effort in training machine learning models. This work presents a label-efficient CNN model using the expected gradient length, an active learning algorithm to select the most informative patches and images, converging earlier and to a better local optimum than the usual SGD (Stochastic Gradient Descent) strategy. Our method also generates useful masks for prediction and segments regions of interest.
引用
收藏
页码:146 / 154
页数:9
相关论文
共 50 条
  • [41] Deep learning-based convolutional neural network structured new image classification approach for eye disease identification
    Topaloglu, I.
    SCIENTIA IRANICA, 2023, 30 (05) : 1731 - 1742
  • [42] A Review on Recent Developments for the Retinal Vessel Segmentation Methodologies and Exudate Detection in Fundus Images Using Deep Learning Algorithms
    Kumar, Silpa Ajith
    Kumar, J. Satheesh
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 1363 - 1370
  • [43] Deep Learning-Based Detection and Classification of Uveal Melanoma Using Convolutional Neural Networks and SHAP Analysis
    Shakeri, Esmaeil
    Mohammed, Emad
    Crump, Trafford
    Weis, Ezekiel
    Shields, Carol L.
    Ferenczy, Sandor R.
    Far, Behrouz
    2023 IEEE 24TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE, IRI, 2023, : 215 - 220
  • [44] Exudate Segmentation using Fully Convolutional Neural Networks and Inception Modules
    Chudzik, Piotr
    Majumdar, Somshubra
    Caliva, Francesco
    Al-Diri, Bashir
    Hunter, Andrew
    MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
  • [45] Automated micro aneurysm classification using deep convolutional spike neural networks
    Vidhyalakshmi, M. K.
    Thaiyalnayaki, S.
    Suganthi, D. Bhuvana
    Porselvi, R.
    Kumuthapriya, K.
    WIRELESS NETWORKS, 2025, 31 (01) : 505 - 515
  • [46] Detection of Exudates in Fundus Photographs using Convolutional Neural Networks
    Prentasic, Pavle
    Loncaric, Sven
    ISPA 2015 9TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS, 2015, : 188 - 192
  • [47] A fully convolutional neural network for recognition of diabetic retinopathy in fundus images
    Jena M.
    Mishra S.P.
    Mishra D.
    Mishra, Smita P. (smitamishra@soa.ac.in), 1600, Bentham Science Publishers (14): : 395 - 408
  • [48] Automated detection of myopic maculopathy from color fundus photographs using deep convolutional neural networks
    Li, Jun
    Wang, Lilong
    Gao, Yan
    Liang, Qianqian
    Chen, Lingzhi
    Sun, Xiaolei
    Yang, Huaqiang
    Zhao, Zhongfang
    Meng, Lina
    Xue, Shuyue
    Du, Qing
    Zhang, Zhichun
    Lv, Chuanfeng
    Xu, Haifeng
    Guo, Zhen
    Xie, Guotong
    Xie, Lixin
    EYE AND VISION, 2022, 9 (01)
  • [49] Diabetic Retinopathy Classification Using CNN and Hybrid Deep Convolutional Neural Networks
    Yasashvini, R.
    Sarobin, Vergin Raja M.
    Panjanathan, Rukmani
    Jasmine, Graceline S.
    Anbarasi, Jani L.
    SYMMETRY-BASEL, 2022, 14 (09):
  • [50] Automated detection and classification of fundus diabetic retinopathy images using synergic deep learning model
    Shankar, K.
    Sait, Abdul Rahaman Wahab
    Gupta, Deepak
    Lakshmanaprabu, S. K.
    Khanna, Ashish
    Pandey, Hari Mohan
    PATTERN RECOGNITION LETTERS, 2020, 133 : 210 - 216