IM3D: A parallel Monte Carlo code for efficient simulations of primary radiation displacements and damage in 3D geometry

被引:58
作者
Li, Yong Gang [1 ,2 ,5 ]
Yang, Yang [2 ]
Short, Michael P. [2 ]
Ding, Ze Jun [3 ,4 ]
Zeng, Zhi [1 ,5 ]
Li, Ju [2 ]
机构
[1] Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230031, Peoples R China
[2] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA
[3] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
[4] Univ Sci & Technol China, Dept Phys, Hefei 230026, Peoples R China
[5] Univ Sci & Technol China, Hefei 230026, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
IN-SITU TEM; ION IRRADIATION; STRUCTURAL STABILITY; COMPUTER-SIMULATION; HELIUM IMPLANTATION; SECONDARY-ELECTRON; TENSILE PROPERTIES; GRAINED TUNGSTEN; STOPPING POWER; ODS STEELS;
D O I
10.1038/srep18130
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
SRIM-like codes have limitations in describing general 3D geometries, for modeling radiation displacements and damage in nanostructured materials. A universal, computationally efficient and massively parallel 3D Monte Carlo code, IM3D, has been developed with excellent parallel scaling performance. IM3D is based on fast indexing of scattering integrals and the SRIM stopping power database, and allows the user a choice of Constructive Solid Geometry (CSG) or Finite Element Triangle Mesh (FETM) method for constructing 3D shapes and microstructures. For 2D films and multilayers, IM3D perfectly reproduces SRIM results, and can be similar to 10(2) times faster in serial execution and >10(4) times faster using parallel computation. For 3D problems, it provides a fast approach for analyzing the spatial distributions of primary displacements and defect generation under ion irradiation. Herein we also provide a detailed discussion of our open-source collision cascade physics engine, revealing the true meaning and limitations of the "Quick Kinchin-Pease" and "Full Cascades" options. The issues of femtosecond to picosecond timescales in defining displacement versus damage, the limitation of the displacements per atom (DPA) unit in quantifying radiation damage (such as inadequacy in quantifying degree of chemical mixing), are discussed.
引用
收藏
页数:13
相关论文
共 87 条
[1]   Controlling Radiation Damage [J].
Ackland, Graeme .
SCIENCE, 2010, 327 (5973) :1587-1588
[2]   Sputtering of a metal nanofoam by Au ions [J].
Anders, Christian ;
Bringa, Eduardo M. ;
Urbassek, Herbert M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2015, 342 :234-239
[3]   Efficient Annealing of Radiation Damage Near Grain Boundaries via Interstitial Emission [J].
Bai, Xian-Ming ;
Voter, Arthur F. ;
Hoagland, Richard G. ;
Nastasi, Michael ;
Uberuaga, Blas P. .
SCIENCE, 2010, 327 (5973) :1631-1634
[4]   Ion-induced surface relaxation: controlled bending and alignment of nanowire arrays [J].
Bettge, Martin ;
MacLaren, Scott ;
Burdin, Steve ;
Haasch, Richard T. ;
Abraham, Daniel ;
Petrov, Ivan ;
Yu, Min-Feng ;
Sammann, Ernie .
NANOTECHNOLOGY, 2012, 23 (17)
[5]   Radiation damage tolerant nanomaterials [J].
Beyerlein, I. J. ;
Caro, A. ;
Demkowicz, M. J. ;
Mara, N. A. ;
Misra, A. ;
Uberuaga, B. P. .
MATERIALS TODAY, 2013, 16 (11) :443-449
[6]   A MONTE-CARLO COMPUTER-PROGRAM FOR THE TRANSPORT OF ENERGETIC IONS IN AMORPHOUS TARGETS [J].
BIERSACK, JP ;
HAGGMARK, LG .
NUCLEAR INSTRUMENTS & METHODS, 1980, 174 (1-2) :257-269
[7]  
Bohr N., 1948, KONGELIGE DANSKE VID, V18, P8
[8]  
Bohr N., 1948, MAT FYS MEDD, V18, P142
[9]   Coupled motion of grain boundaries in bcc tungsten as a possible radiation-damage healing mechanism under fusion reactor conditions [J].
Borovikov, Valery ;
Tang, Xian-Zhu ;
Perez, Danny ;
Bai, Xian-Ming ;
Uberuaga, Blas P. ;
Voter, Arthur F. .
NUCLEAR FUSION, 2013, 53 (06)
[10]   Ion beam irradiation of nanostructures - A 3D Monte Carlo simulation code [J].
Borschel, C. ;
Ronning, C. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2011, 269 (19) :2133-2138