Bifunctional oxygen evolution and supercapacitor electrode with integrated architecture of NiFe-layered double hydroxides and hierarchical carbon framework

被引:16
作者
Chen, Fenggui [1 ,2 ]
Zhang, Liyang [2 ]
Wu, Huiqing [3 ]
Guan, Cao [4 ]
Yang, Yong [5 ]
Qiu, Jing [2 ,6 ]
Lyu, Pengbo [7 ]
Li, Meng [2 ]
机构
[1] Yangtze Normal Univ, Sch Chem & Chem Engn, Chongqing 408100, Peoples R China
[2] Chongqing Univ, CQU NUS Renewable Energy Mat & Devices Joint Lab, Sch Energy & Power Engn, MOE Key Lab Low Grade Energy Utilizat Technol & S, Chongqing 400044, Peoples R China
[3] Xiamen Univ Technol, Sch Mat Sci & Engn, Fujian Prov Key Lab Funct Mat & Applicat, Xiamen 361021, Peoples R China
[4] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117573, Singapore
[5] Natl Univ Singapore, Temasek Labs, Singapore 117411, Singapore
[6] Chongqing Univ, Coll Optoelect Engn, Key Lab Optoelect Technol & Syst, Educ Minist China, Chongqing 400044, Peoples R China
[7] Charles Univ Prague, Fac Sci, Dept Phys & Macromol Chem, Prague 12843 2, Czech Republic
关键词
bifunctional; flexible electrode; layered double hydroxides; DFT; integrated electrode; OER; PEROVSKITE SOLAR-CELLS; NICKEL FOAM; EFFICIENT; NANOSHEETS; GRAPHENE; ELECTROCATALYSTS; FILM; FE; NANOPARTICLES; POLYPYRROLE;
D O I
10.1088/1361-6528/ab178c
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Layered double hydroxide with exchangeable interlayer anions are considered promising electro-active materials for renewable energy technologies. However, the limited exposure of active sites and poor electrical conductivity of hydroxide powder restrict its application. Herein, bifunctional integrated electrode with a 3D hierarchical carbon framework decorated by nickel iron-layered double hydroxides (NiFe-LDH) is developed. A conductive carbon nanowire array is introduced not only to provide enough anchoring sites for the hydroxide, but also affords a continuous pathway for electron transport throughout the entire electrode. The 3D integrated architecture of NiFe-hydroxide and hierarchical carbon framework possesses several beneficial effects including large electrochemical active surfaces, fast electron/mass transport, and enhanced mechanical stability. The as-prepared electrode affords a current density of 10 mA cm(-2) at a low overpotential of 269 mV for oxygen evolution reaction (OER) in 1 M of KOH. It also offers excellent stability with negligible current decline even after 2000 cycles. Besides, density functional theory calculations revealed that the (110) surface of NiFe-LDH is more active than the (003) surface for OER. Furthermore, the electrode possesses promising application prospects in alkaline battery-supercapacitor hybrid devices with a capacity of 178.8 mAh g(-1) (capacitance of 1609.6 F g(-1)) at a current density of 0.2 A g(-1). The viability of the as-prepared bifunctional electrode will provide a potential solution for wearable electronics in the near future.
引用
收藏
页数:12
相关论文
共 65 条
[1]   Seamlessly Conductive 3D Nanoarchitecture of Core-Shell Ni-Co Nanowire Network for Highly Efficient Oxygen Evolution [J].
Bae, Seok-Hu ;
Kim, Ji-Eun ;
Randriamahazaka, Hyacinthe ;
Moon, Song-Yi ;
Park, Jeong-Young ;
Oh, Il-Kwon .
ADVANCED ENERGY MATERIALS, 2017, 7 (01)
[2]   Molybdenum Sulphoselenophosphide Spheroids as an Effective Catalyst for Hydrogen Evolution Reaction [J].
Bose, Ranjith ;
Jothi, Vasanth Rajendiran ;
Koh, Beomsoo ;
Jung, Chiyoung ;
Yi, Sung Chul .
SMALL, 2018, 14 (08)
[3]   Multi-Component Fe-Ni Hydroxide Nanocatalyst for Oxygen Evolution and Methanol Oxidation Reactions under Alkaline Conditions [J].
Candelaria, Stephanie L. ;
Bedford, Nicholas M. ;
Woehl, Taylor J. ;
Rentz, Nikki S. ;
Showalter, Allison R. ;
Pylypenko, Svitlana ;
Bunker, Bruce A. ;
Lee, Sungsik ;
Reinhart, Benjamin ;
Ren, Yang ;
Ertem, S. Piril ;
Coughlin, E. Bryan ;
Sather, Nicholas A. ;
Horan, James L. ;
Herring, Andrew M. ;
Greenleette, Lauren F. .
ACS CATALYSIS, 2017, 7 (01) :365-379
[4]   Nickel- Cobalt Layered Double Hydroxide Nanosheets for High- performance Supercapacitor Electrode Materials [J].
Chen, Hao ;
Hu, Linfeng ;
Chen, Min ;
Yan, Yan ;
Wu, Limin .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (07) :934-942
[5]   An Iron-based Film for Highly Efficient Electrocatalytic Oxygen Evolution from Neutral Aqueous Solution [J].
Chen, Mingxing ;
Wu, Yizhen ;
Han, Yongzhen ;
Lin, Xiaohuan ;
Sun, Junliang ;
Zhang, Wei ;
Cao, Rui .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (39) :21852-21859
[6]   Fe3 O4 Nanoparticles Embedded in Uniform Mesoporous Carbon Spheres for Superior High- Rate Battery Applications [J].
Chen, Yu ;
Song, Bohang ;
Li, Meng ;
Lu, Li ;
Xue, Junmin .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (03) :319-326
[7]   Solar Energy Supply and Storage for the Legacy and Non legacy Worlds [J].
Cook, Timothy R. ;
Dogutan, Dilek K. ;
Reece, Steven Y. ;
Surendranath, Yogesh ;
Teets, Thomas S. ;
Nocera, Daniel G. .
CHEMICAL REVIEWS, 2010, 110 (11) :6474-6502
[8]   Broadband polarizing films by photopolymerization-induced phase separation and in situ swelling [J].
Fan, B. ;
Vartak, S. ;
Eakin, J. N. ;
Faris, S. M. .
APPLIED PHYSICS LETTERS, 2008, 92 (06)
[9]   A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts [J].
Gong, Ming ;
Dai, Hongjie .
NANO RESEARCH, 2015, 8 (01) :23-39
[10]   An Advanced Ni-Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation [J].
Gong, Ming ;
Li, Yanguang ;
Wang, Hailiang ;
Liang, Yongye ;
Wu, Justin Z. ;
Zhou, Jigang ;
Wang, Jian ;
Regier, Tom ;
Wei, Fei ;
Dai, Hongjie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (23) :8452-8455